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Introduction to CSM Testbed Procedures Manual

1.0 Introduction to CSM Testbed Procedures Manual

This manual is designed to assist users in defining and using command procedures to
perform structural analyses. It is expected that the user has read Chapters 1 and 2 of the
CSM Testbed User’s Manual (reference 1-1). It is assumed that the user is familiar with

terms such as CLIP, macrosymbol, processor, and dataset.

Runstreams are the vehicle used to perform structural analyses with the CSM Testbed.
The term “runstream” most commonly refers to the file (or files) used to perform a specific
analysis, although it may also refer to input at an interactive session. A runstream will
typically contain CLAMP directives and processor commands.

Directives, recognized and processed by CLIP, provide the user with, among other things,
a means of defining command procedures. These command procedures, defined using
the *PROCEDURE directive, bear some resemblance to FORTRAN subroutines. They may
contain branching and looping constructs (implemented using the *D0, *IF, and *WHILE
directives) as well as other directives and processor and macroprocessor commands. Com-
mand procedures may be given arguments which, unlike FORTRAN subroutine arguments,
may be assigned default values. When a command procedure is called (using the *CALL di-
rective) execution control shifts to the command procedure until the last directive (an *END
directive) in the procedure is encountered. Once the *END directive is encountered, control
returns to the input line in the calling procedure or runstream immediately following the
call.

Command procedures, while extremely useful, are not a requirement for performing many
types of simple analyses. A command procedure is only required if using the looping or
branching constructs (i.e., the *D0, *IF, and *WHILE directives). Procedures should not
be used to carry out the computationally intensive activities that are better performed by
Processors.

This chapter begins with a discussion of CLAMP directives and continues with a discussion
of the mechanics of processor execution. A template for linear, static analyses is provided in
Section 1.3. Section 1.4 offers some suggestions for creating and using procedures and the
CSM Testbed Procedures Manual is described in Section 1.5. Some examples of command
procedures are given in Section 1.6.
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1.1 CLAMP Directives

Directives are special commands that are recognized and processed by CLIP and are not

transported to the processor. A directive is to CLIP like ordinary input is to the processor.

A A: 43 +
A directive is distinguished from ordinary input by beginning with a keyword prefixed by

an asterisk. The keyword (directive verb) may be followed by a verb modlﬁer, qualifiers,
and parameters, as required by the syntax of the specific directive. See references 1-2
and 1-3 for a complete description of the command language. An interactive help facility,
accessed by the *HELP directive, is built in to explain directives. For a complete list with
full descriptions, the user is directed to reference 1-3.

A summary of the most useful directives, grouped according to their function in the Testbed
execution environment is provided here for easy reference. Detailed descriptions of all
directives are provided in reference 1-3.

Table 1.1-1 CLAMP Directive Summary

Global Data Manager Interface

*0PEN Open data library
*CLOSE Close data library
*TOC Print table of contents of library
*PRINT Print table of contents, dataset record contents, or record
access table of dataset
*PACK Pack a data library, deleting disabled datasets
*COPY Copy datasets or dataset records
*DELETE Delete (i.e., disable) dataset or record
*ENABLE Enable previously deleted or disabled datasets or records
*FIND Returns information on libraries, datasets, or records
*RENAME Renames dataset or record
Command Procedure Management
*SET PLIB Set procedure library for residence of command procedures
*PROCEDURE Initiates definition of command procedure
*CALL Redirects input to a callable procedure (“calls” a procedure
with optional argument replacement)
Nonsequential Command Processing
*IF Conditional branching construct
*ELSE
*ELSEIF
*ENDIF
*D0 Looping construct
*ENDDO
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*WHILE
*ENDWHILE

*JUMP
*RETURN
*END

*DEFINE
*UNDEFINE
*SHOW MACRO
*G2M

Introduction to CSM Testbed Procedures Manual

While-looping construct

Transfer control to specified label
Force exit from command procedure
Terminate definition of command procedure

Macrosymbol Directives

Define a macrosymbol or macrosymbol array
Delete macrosymbol(s)

Show macrosymbols

Define a macrosymbol from a database entity

*M2G Create a database entity from the value of a macrosymbol
Built-in Common constants, mathematical functions,
macrosymbols generic functions, reserved variables, boolean
functions, logical functions, string catenator, string matchers,
and status macros
SuperClip Directives
*RUN Start execution of another program
*STOP Stops RUN-initiated execution and restarts the parent processor
General Directives
*HELP Lists information from NICE HELP file
*SET Sets specified NICE control parameters
*SHOW Shows specified NICE control parameters
*ADD Redirects input to a text file
*REMARK Print remark line
*UNLOAD Unload contents of GAL library to an ASCII file
*LOAD Load contents of GAL library from an ASCII file
1.1-2 CSM Testbed Procedures Manual Revised 12/19/91
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1.2 Executing Processors

There are two types of analysis modules, or processors, associated with the Testbed: in-
ternal processors, which have been installed as part of the macroprocessor, and external
processors. Either type of processor may be executed using the macroprocessor execute
command, [XQT. The user merely appends the processor name to the [XQT and the named
processor will begin execution. For example,

[xXQT INV

will start the execution of the processor INV. In order to use this method of execution
for external processors, the executable version of the processor must reside in the default
directory being used by the macroprocessor or in other pre-defined directories depending
on computer system syntax. In addition, the name of an external processor cannot be the
same as the name of any internal processor.

External processors may also be executed using the *RUN directive. When this directive
is used, a full pathname may be given so that external processors may be kept anywhere.
For example, under the VMS operating system,

*RUN duaO: [testbed.extp] INVX

will begin execution of processor INVX, located in dua0: [testbed.extp].

Once a processor (internal or external) is running, it will begin to accept input according
to the requirements of the individual processor as described in Chapters 4 through 14 of
the CSM Testbed User’s Manual (Ref. 1-1). The processor will continue accepting input
until either another [XQT, a STOP, or a *STOP is encountered. If a STOP occurs, execution
will proceed to completion of the processor’s assigned task after which the processor named
on the next [XQT command begins execution. If an [XQT occurs, execution will proceed to
completion of the processor’s assigned task after which the processor named on that last
[XQT begins execution. A *STOP terminates processor execution immediately.

The following runstream provides an example of processor, macroprocessor, and CLIP in-
teraction. The linear, static analysis, a very simple example, with one procedure definition,
has been taken from the demonstration problem set library. The procedure is defined so
that the *D0 directive may be used in defining joint locations (recall that the *D0 directive
may only be used within a command procedure). Note also that the procedure is com-
pletely defined before it has been called. This is an absolute requirement — procedures
must be defined before they are called.
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*procedure demoi . Directives
xopen 1 demo1.101 /mew
[xqt TAB . Macroprocessor command to execute TAB
START 5 . Processor TAB input
JOINT LOCATIONS
*do $i = 1,5 . Directive to generate TAB input
node x y z . Comment
<$i> 0. 0. <10.%<$i>> . TAB Input
»enddo . Directive to end input loop
MATERIAL CONSTANTS . Direct TAB input

1 10.E+6 .3 .101 .1E-4
BEAM ORIENTATIONS
11111,

E21 SECTION PROPERTIES
TUBE 1 2. 2.25
CONSTRAINT DEFINITION 1
ZERD 1 23456

1
[xqt ELD . Macroprocessor command to execute ELD

E21 . Direct ELD Input

12

23

34

45
[xqt TOPO . Macroprocessor command to execute TOPO
[xqt E . Macroprocessor command to execute E
[xqt EKS . Macroprocessor command to execute EKS
[xqt K . Macroprocessor command to execute K
[xqt INV . Macroprocessor command to execute INV
ALPHA . Direct AUS input

CASE TITLES
1>TRANSVERSE LOAD
27 AXIAL LOAD
SYSVEC
APPLIED FORCES
CASE 1
I=2
J=5
1000,
CASE 2
I=3
J=5
10000.
[xqt SSOL . Macroprocessor command to execute SSOL
[xqt GSF . Macroprocessor command to execute GSF
[xqt PSF . Macroprocessor command to execute PSF
stop . Macroprocessor command to exit
*end . Directive denoting procedure end

*call demo1l . Directive calling procedure demol
[xqt exit . Macroprocessor command to end execution
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It is important to note that while directives may be used to generate input data, the
directives themselves do not provide input to the processors. The *DO0 directive, used in
the JOINT LOCATIONS subprocessor of processor TAB, provides the user with a means of
automatically generating TAB input; the line containing the *do $i = 1,5 provides no
information io processor TAB but is meaningful to CLIP. The result of executing this *D0

directive is to produce five input lines for consumption by processor TAB.
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1.3 Runstream Organization

While the Testbed is highly modular, certain processors do depend on information gener-
ated by other processors, thus there is some degree of interdependence among the installed
processors. In many cases, the order in which processors must be executed is the same
as the order in which they appear in the CSM Testbed User’s manual (ref. 1-1); this is
not entirely true when using one or more of the independent element processors. The
following section provides a template for performing a linear static analysis using one or

more independent element processors (Section 1.3.1).

1.3.1 RUNSTREAM FOR INDEPENDENT ELEMENT PROCESSORS

The generic element processor template was developed to provide greater flexibility to
element developers. It does however, add a level of complexity to the analysis, even to a
simple linear, static analysis. This complexity is kept hidden to the average user by the use
of a “cover procedure.” The procedure name is ES and details of its use may be found in
reference 1-4. Essentially, procedure ES manages the execution of the independent element
processors, ESi.

Listed below is the order of processor and procedure execution for a linear static analysis
using one or more of the independent element processors. Following the list is an example
(the same example used in the previous section) which calls procedure ES.

1. Procedure ES. Call procedure ES to define element parameters and several global
macrosymbols which may be used to automate the definition of joint locations and
element connectivity. This call must be made for each different element type in the
model, regardless of the number of element processors used.

Processor TAB. Define joint locations, constraints, reference frames.

Processor AUS. Build tables of material and section properties.
Processor LAU. Form constitutive matrix.

Processor ELD. Define elements. Element definitions include element connectivity,
element material reference frame number, element section type number.

A

6. Processor E. Initialize element datasets; create the dataset which will contain all
important element information (e.g., intrinsic coordinates, element-to-global transfor-
mations, intrinsic stiffness matrices).

7. Procedure ES. Initialize element matrices.
8. Procedure ES. Calculate element intrinsic stiffness matrices.
9. Processor RSEQ or PFM. Resequence nodes for minimum total execution time.

10. Processor TOPO. Form maps which guide the assembly and factorization of system
matrices.

Revised 12/19/91 CSM Testbed Procedures Manual 13-1

PRECEDING PAGE rLAllX NOT FiLMED



Runstream Organization

Introduction to CSM Testbed Procedures Manual

11. Processor K. Assemble system stiffness matrix.
12. Processor INV. Factor system stiffness matrix.
13. Processor AUS. Create applied nodal 'loading;
14. Processor SSOL. Solve for static displacements.

15. Procedure ES. Calculate element stress resultants.

16. Post-process using any of the following processors: VPRT, PRTE, PLOT, CONT,

T2PT.

1.3.2 EXAMPLE RUNSTREAM

The following runstream provides an example of a very simple linear static analysis. The
problem is to calculate the stress in an isotropic flat plate subjected to a uniform end-
shortening. One-fourth of the plate is modeled and symmetry boundary conditions are
applied.

. Do not echo input
. ADD file containing procedure ES
. Open data library

#get echo=off
#add [testbed.proclib]lGENUTIL.PRC
sopen/nev 1, flat_plate

*def/a es_name == ’EX91’ . Element name
#def/a es_proc == ’ES1’ . Element processor name

*call ES ( function = ’DEFINE ELEMENTS’; es_proc = <es_proc/p>; —-
es_name = <es_name/p>)
[xqt TAB

START 25 6 . Twenty five nodes total, dof 6 zero

JOINT LOCATIONS . Enter joint locations
1 0.0 0.0 0.0 2.6 0.0 0.0 5165
5 0.0 2.6 0.0 2.5 2.5 0.0
CONSTRAINT DEFINITION 1 . Constraints:

symm plane=1 . Plane 2,3 plane of symmetry
symm plane=2 . Plane 1,3 plane of symmetry
zero 3: 1 . Constrain center w

nonzero 1 : 65,25,5 . Apply displacement at x=1x edge

[xqt AUS . Material and Section properties

*def/e g = 3.84615e+6
TABLE(NI=16,NJ=3): OMB DATA 1 1
1-1,2,3,4,5,6,7,8,9
J=1: 10.0E+6 .30 10.0E+6 <g> <g> <g> 0.0 0.0 .1

. Table of material properties

1.3-2 CSM Testbed Procedures Manual
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. Table of section properties

TABLE (NI=3,Nj=1,itype=0): LAM OMB 1 1
J=1: 2 .10.00
[xqt LAU . Generate constitutive matrix
NOTE -- The macrosymbols es_nip, es_nstr, es_nen, and es_opt
were all globally defined by procedure ES the first time
the procedure was called.
[xqt ELD . Define elements
sdef/i nst = <<es_nip>*<es_nstr>>
EXPE <es_name> <es_nen> <es_opt> <es_nen> 6 <nst> 1 101 2
NSECT = 1
1 31311 2 8 12 6 7 122
[xqt E . Initialize element datasets
stop
*open 1

*call ES (function=’INITIALIZE’)
»call ES (function=’FORM STIFFNESS/MATL’)
[xqt RSEQ
{xqt TOPO
[xqt K
[xqt INV
online=2
AUS
sysvec : appl moti
i=1: J=5,256,5:
SSOL
stop
*open 1
#call ES (function
es_dis_ds
[xqt VPRT
format=4
print STAT DISP
[xqt PRTE
reset segl=7,seg2=7
[xqt exit

[xqt

-0.001
[xqt

*FORM STRESS’; --
STAT.DISP.1.1 )

. Initialize element matrices

. Form intrinsic stiffness matrices

. Resequence
. Create maps
. Assemble global stiffness matrix

. Form applied loading

. Solve for static displacements

. Calculate element stresses

. Print static displacements

. Print element stresses
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1.4 Creating and Using Procedures

1.4.1 CREATING A PROCEDURE

Most directives are so simple that they may easily be entered from a keyboard terminal.
One could try to define simple procedures in exactly that manner. There are two problems
with this approach:

1. A keyed-in sequence of directives and commands is volatile and is not saved unless
a log file has been opened, although a procedure definition is compiled and saved.

2. Post-facto editing is impossible; once the return key it pressed, the line is gone.

These disadvantages become increasingly serious in long or involved procedures. The most
practical way to create most procedures is to use a text editor. Once the procedure source
text is ready on a data file, it can be inserted into the command source stream with the
*ADD directive.

1.4.2 RESIDENCE OF CALLABLE PROCEDURE ELEMENTS

When CLIP encounters a *PROCEDURE directive, it enters directive mode and does not exit
until the *END directive is detected. The result of this process is an “object” version of
the procedure, known as a callable procedure element. CLIP can store a callable procedure
element in one of two residence media:

1. An ordinary direct-access formatted file created through a FORTRAN 77 OPEN state-
ment. All records of such a file have the same length (namely 80 characters) and
contain one data line. The file name is the same as the procedure name except on a
VMS VAX where a .DAT is appended to the procedure name to create the file name.
For example, a procedure named GEN_PLATE will generate a file named GEN_PLATE.DAT
on a VMS VAX and a file named GEN_PLATE on other machines. If the *SET PLIB
directive has not been used prior to the *PROCEDURE directive, direct-access files will
be created automatically.

2. A data library managed through the global data manager. A callable procedure is
stored as a text group. In order to store procedures in a data library, the *SET PLIB
directive must be used.

The text of a callable procedure element is basically a copy of the source procedure body,
prefaced by three linkage tables. These tables store argument names, argument default
text, labels (explicit or generated) and their locations within the body of the procedure.
NEVER tamper with a callable procedure element. If the procedure must be changed,
change the source and reprocess the file.

Revised 12/19/91 CSM Testbed Procedures Manual 14-1
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1.4.3 USING A PROCEDURE

Callable procedure elements are accessed through the *CALL directive. Text substitution is
controlled by the argument specification mechanism. In a command procedure reference,
text is passed instead of addresses to data. The text supplied in the *CALL directive is
replaced before the command is interpreted. In addition, arguments not supplied in the
*CALL, assume the default values given in the *PROCEDURE definition. A procedure body
may include calls to other procedures, or may even call itself, with the ensuing call tree
extending down several levels.
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1.5 The CSM Testbed Procedures Manual

A GAL library which contains the callable procedure elements for all of the procedures
described in the following sections (2-9) of this manual is read-accessible to all Testbed
users. Separate subdirectories under the prc directory contain solution procedures (see
Chapter 3), model generation procedures (see Chapter 2), utility procedures (see Chap-
ter 6), and postprocessing procedures (see Chapter 7). This directory structure is the
same across various computer systems with differences only in the description of the path
name for each subdirectory. On a VMS VAX computer, this file is referred to by the
name CSM_PRC:PROCLIB.GAL; on UNIX-type computers, it is referred to by the name
»$CSM_PRC/proclib.gal’. If the user does not need to define any new procedures for
use in a particular Testbed runstream, this file can be used as the procedure library by

including the following commands in the runstream:
*set plib = 28

*open 28 CSM_PRC:PROCLIB.GAL /READ (on VMS)
or
*open 28 ’$CSM_PRC/proclib.gal’ /READ (on UNIX)

The source code for the procedures resides in subdirectories under the one which contains
proclib.gal. These procedures are also read-accessible to all Testbed users. They can be
included in the user’s private procedure library by placing commands like the following in
a Testbed runstream:

*set plib=28

*open 28 proclib.gal /NEW

*add GEN_UTIL:ES.CLP (on VMS)
or
*add ’$GEN_UTIL:es.clp’ (on UNIX)

or alternatively; on UNIX:

cp $CSM_PRC/proclib.gal .
chmod 765 proclib.gal
testbed

*set plib=28

*open 28 proclib.gal
*add local.prc

or on VMS:

$COPY CSM_PRC:PROCLIB.GAL []
$Testbed

*set plib=28

*open 28 proclib.gal

*add local.prc

where local.prc is the CLAMP source file for personal procedure(s).
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1.6 Examples

This section provides several examples of the use of procedures. For the sake of consistency,
where files are discussed, VAX/VMS filenames have been used. The filename convention
used is that a fle with a *.CLP extension contains a single procedure, while a file with a
*.PRC extension contains multiple procedures. The *ADD and the driving *CALL directives
typically appear in files with the *.COM extension.

1.6.1 A SIMPLE EXAMPLE

As an introductory example, an annotated procedure is presented which may be used to
run a variety of elements through the same flat plate problem. In most applications, this
procedure would be kept in a file by itself and that file would be added (using the *ADD
directive) to a much shorter runstream located in an execution control file. The procedure
and a VAX/VMS execution control file are listed in the following subsections.

1.6.1.1 The Procedure File

The following procedure is kept in a file named FLAT_PLATE.CLP.

sprocedure FLAT_PLATE ( es_proc ; es_name )
ARGUMENTS:

es_proc: Independent element processor name
es_name: Element name

»if <ifeqs([es_name];E43)> /then
*def/i es_nen = 4
xglse
#=call ES ( function = ’DEFINE ELEMENTS’; es_proc = [es_procl; —-
es_name = [es_name])

*endif
[xqt TAB
START 25 6 . Twenty-five joints; dof 6 zero
JOINT LOCATIONS . Define joint locations
1 0.0 0.0 0.0 2.5 0.0 0.0 515
5 0.0 2.5 0.0 2.5 2.5 0.0
CONSTRAINT DEFINITION 1 ) . Constraints:
symm plane=1 . Plane 2,3 plane of symmetry
symm plane=2 . Plane 1,3 plane of symmetry
zero 3: 1 . Constrain center w
nonzero 1 : 5,26,5 . Apply displacement at x=1x edge
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[xqt AUS

*def/e g = 3.84616e+6

TABLE(NI=16 ,NJ=3): OMB DATA 1 1 . Define material properties
1-1,2,3,4,6,6,7,8,9
J=1: 10.0E+6 .30 10.0E+6 <g> <g> <g> 0.0 0.0 .1
. Define Section properties
TABLE (NI=3,NJ=1,itype=0): LAM OMB 1 1
J=1 : 2 .1 0.00

[xqt LAU . Form constitutive matrix

[xqt

[xqt

»if

*els

»if <ifeqs([es_name] ;E43)> /then
reset SPAR=-1
sendif

ELD . Define elements
#if <ifeqs([es_name] ;E43)> /then

E43
*else

NOTE -- The macrosymbols es_nip, es_nstr, es_nen, and es_opt
were globally defined by procedure ES the first time
the procedure was called.

*def/i nst = <<es_nip>*<es_nstr>> . Number of stress resultants
EXPE [es_name] <es_nen> <es_opt> <es_nen> 6 <nst> 1 101 2

*endif
NSECT = 1

#if < <es_nen> /eq 4 > /then

12786 1 4 4 . Element connectivity for 4-node elts
selseif < <es_nen> /eq 9 > /then

1 31311 2 8 12 6 71 2 2 . Element connectivity for 9-node elts
=endif

E . Initialize all element datasets
stop
#*open 1
<ifeqs ( [es_name] ;E43)> /then . Form intrinsic stiffness matrices:
[xqt EKS . for E43
e

#call ES (function=’INITIALIZE’)
»call ES (function='FORM STIFFNESS/MATL’) . for other elements

*endif
[xqt RSEQ . Resequence
[xqt TOPO . Create maps
[xqt K . Assemble system stiffness matrix
[xqt AUS . Form applied loading
sysvec : appl moti
i=1: J=5,25,5: -0.001
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[xqt INV . Factor stiffness matrix
online=2
[xqt SSOL . Solve for static displacements
stop
*open 1
. Calculate stresses
*if <ifeqs([es_name];E43)> /then . for E43
[xqt GSF
[xqt PSF
reset display=2
*else . for other elements
#call ES ( function = ’FORM STRESS’; es_dis_ds = STAT.DISP.1.1 )
*endif
[xqt VPRT . Print displacements
format=4
print STAT DISP
*end

1.6.1.2 The Execution Control File

The file FLATPLATE. COM, listed below, contains no procedures, only the *ADD and the *CALL
to the procedure defined in the previous section.

$ testbed ! Execute Testbed macroprocessor
*get echo off

*open 1 flat_plate.l01 . Open data library

*add flat_plate.clp . Add procedure file BEFORE call

scall FLAT_PLATE ( es_proc=ES1; es_name=Ex97 )

[xqt EXIT . Exit macroprocessor

1.6.2 MACROSYMBOL USAGE EXAMPLE

The runstream described in this section still contains only one procedure; that procedure is
somewhat more complicated than the procedure of the first section although the problem
to be solved is the same. The number of elements along z and y have been parameterized
to allow for mesh convergence studies for the various elements. The logic of the procedure
remains the same; there are simply more macrosymbol definitions. The procedure and the
execution control file are listed in the following subsections.

1.6.2.1 The Procedure File

The following procedure is kept in a file named FLAT_PLATE. CLP.

sprocedure FLAT_PLATE ( es_proc=ES1; es_name=Ex97;-- )
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NEL_x ; NEL_y )
ARGUMENTS:
es_proc: Independent element processor name
es_name: Element name
NEL_x: Number of elements in the x direction
NEL_y: Number of elements in the y direction

*if <ifeqs([es_name];E43)> /then
*def/i es_nen = 4
*else
#call ES ( function =
es_name = [es_name])
*endif

Define necessary macrosymbols

*if << es_nen > /eq 4 > /then
#def/i nn_x = <<[NEL_x]> + 1 >
»def/i nn_y = <<[NEL_yl> + 1 >
*def/i nn_total = <<nn_x>*<nn_y>>
selseif << es_nen > /eq 9 > /then

*def/i nn_x = <2=<[NEL_x]> + 1 >
»def/i nn_y = <2+<[NEL_yl> + 1 >
#def/i nn_total = <<nn_x>*<nn_y>>
sendif
[xqt TAB

.

START <nn_total> 6

JOINT LOCATIONS

1 0.0
<nn_x> 0.0

0.0
2.5

0.0 2.5
0.0 2.5

0.0
2.5

CONSTRAINT DEFINITION 1
symm plane=1
symm plane=2
zero 3: 1

nonzero 1 : <nn_x>,<nn_total>,<nn_x

[xqt AUS
*def/e g = 3.8461be+6
TABLE(NI=16,NJ=3): OMB DATA 1 1
1-1,2,3,4,6,6,7,8,9

*DEFINE ELEMENTS’; es_proc =

[es_procl; --

. If 4-node elements are used:
Num. nodes in x-direction
Num. nodes in y-direction

. Num. nodes total
. If 9-node elements are used:
. Num. nodes in x-direction
Num. nodes in y-direction
. Num. nodes total

. Twenty-five joints; dof 6 zero
. Define joint locations

0.0 <nn_x> 1 <nn_y>

0.0

. Constraints

. Plane 2,3 plane of symmetry
. Plane 1,3 plane of symmetry
. Constrain center w

. Define material properties

J=1: 10.0E+6 .30 10.0E+8 <g> <g> <g> 0.0 0.0 .1

.00

. Define Section properties

TABLE (NI=3,NJ=1,itype=0): LAM OMB 1 1
:2.10

J=1

1.6-4
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. Apply displacement at x=1x edge
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[xqt

© -
ixqt

LAU . Form constitutive matrix
*if <ifeqs([es_namel; E43)>/ then
reset SPAR=-1

*endif
ELD . Defins slsments
*if <ifeqs([es_name]; E43)>/ then
E43 . E43 elements
*else
NOTE -- The macrosymbols es_nip, es_nstr, es_nen, and es_opt
were globally defined by procedure ES the first time
the procedure was called.
*def/i nst = <<es_nip>*<es_nstr>> . Number of stress resultants

EXPE [es_name] <es_nen> <es_opt> <es_nen> 6 <nst> 1 101 2
*endif
NSECT = 1

*if < <es_nen> /eq 4 > /then
. Use 4-node element mesh generator
xdef/i j1 = 1
*def/i j2 = 2
sdef/i j3 = <<j2>+<nn_x>>
sdef/i j4 = <<ji1>+<nn_x>>

. Element connectivity for 4-node elts
<j1> <j2> <3j3> <j4> 1 <[NEL_x]1> <[NEL_yl>

selseif < <es_nen> /eq 9 > /then
. Use 9-node element mesh generator
*def/i j1 = 1
sdef/i j5 = 2
*def/i j2 = 3

*def/i j8 = <<j1> + <nn_x>>
*def/i j9 = <<jB> + <nn_x>>
*def/i j6 = <<j2> + <nn_x>>
sdef/i j4 = <<j8> + <nn_x>>
sdef/i j7 = <<j9> + <nn_x>>
*def/i j3 = <<j6> + <nn_x>>

. Element connectivity for 9-node elts

<j1> <j2> <j3> <j4> <j5> <j6> <jT> <j8> <j9> 1 <[NEL_x]> <[NEL_yl>

*endif

[xqt E . Initialize all element datasets
stop
*open 1

*if <ifeqs([es_namel; E43)>/ then . Form intrinsic stiffness matrices
[xqt EKS . for E43

*else

*call ES (function=’INITIALIZE’)
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#call ES (function=’FORM STIFFNESS/MATL') . for other elements
*endif
[xqt RSEQ . Resequence
[xqt TOPO . Create maps
[xqt K . Assemble system stiffness matrix
[xqt AUS . Form applied loading
sysvec : appl moti
i=1: J=<nn_x>,<nn_total>,<nn_x>: -0.001
[xqt INV . Factor stiffness matrix
online=2
[xqt SSOL . Solve for static displacements
stop
*open 1
. Calculate stresses
+if <ifeqs([es_name]; E43)>/ then . for E43
[xqt GSF
[xqt PSF
reset display=2
*else . for other elements
wcall ES ( function = *FORM STRESS’; es_dis_ds = STAT.DISP.1.1 )
sendif
[xqt VPRT . Print displacements
format=4

print STAT DISP
*end

1.6.2.2 The Execution Control File

The file, FLATPLATE . COM, listed below contains no procedures, only the*ADD and the *CALL
to the procedure defined in the previous section.

$ testbed 1 Execute Testbed macroprocessor
*#get echo off

sopen 1 flat_plate.1l01 . Open data library

sadd flat_plate.clp . Add procedure file BEFORE call

«call FLAT_PLATE ( es_proc=ES1; es_name=Ex97; --
Nel_x=4; Nel_y=4 )

[xqt EXIT . Exit macroprocessor

One may notice that, except for the two extra arguments (NEL_x and NEL_y) in the *CALL
directive, this file is the same as the FLATPLATE. COM file of the last section.
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1.6.3 A MULTIPLE PROCEDURE EXAMPLE

In many cases, it may be to the user’s advantage to build and maintain a procedure library
which may be used for classes of problems. For example, in a solution library, one may
keep procedures for providing linear static solutions, buckling eigenvalues, and nonlinear
static solutions. In this section, the procedure of the previous section is split up into three
procedures — PLATE_MODEL, PLATE_BC, and L_STATIC - which generate the model, generate
the boundary conditions, and perform the linear, static solution respectively. The three
procedures are kept in two files: L_STATIC.CLP (contains only procedure L_STATIC) and
FLATPLATE.PRC (contains PLATE_MODEL and PLATE_BC). Finally, the file FLATPLATE.COM

uses the *ADD directive to add the two files and the *CALL directive to call the procedures.

1.6.3.1 The Model Generation Procedures

The following two procedures, PLATE_MODEL and PLATE_BC, are, for the sake of the example
to be kept in a file named FLATPLATE. PRC. Note that the boundary conditions and applied
loads are both in the procedure PLATE BC and that if other boundary conditions were
desired, this procedure could be decoupled from the model generation procedure and stored
in a separate file. In that case, the procedure name could be passed as an argument to
PLATE MODEL which would then call the passed name instead of PLATE_BC.

*procedure PLATE_MODEL ( es_proc ; es_name ; --
NEL_x ; NEL_y )

ARGUMENTS:

es_proc: Independent element processor name
es_name: Element name

NEL_x: Number of elements in the x direction
NEL_y: Number of elements in the y direction

»if <ifeqs([es_name];E43)> /then
*def/i es_nen = 4
*else
#call ES ( function = ’DEFINE ELEMENTS’; es_proc = [es_procl; --

es_name = [es_name])
*endif

Define necessary macrosymbols

*if << es_nen > /eq 4 > /then . If 4-node elements are used:
sdef/i nn_x = <<[NEL_x]> + 1 > . Num. nodes in x-direction
sdef/i nn_y = <<[NEL_yl> + 1 > . Num. nodes in y-direction
*def/i nn_total = <<nn_x>*<nn_y>> . Num. nodes total

*elseif << es_nen > /eq 9 > /then . If 9-node elements are used:
s«def/i nn_x = <2*<[NEL_x]> + 1 > . Num. nodes in x-direction
sdef/i nn_y = <2#<[NEL_y]> + 1 > . Num. nodes in y-direction
*def/i nn_total = <<nn_x>#*<nn_y>> . Num. nodes total

*endif
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txqt TAB
START <nn_total> 6 . Tuenty-five joints; dof 6 zero
JOINT LOCATIONS . Define joint locations
1 0.0 0.0 0.0 2.5 0.0 0.0 <nn_x>1 <nn_y>

<nn_x> 0.0 2.6 0.0 2.5 2.5 0.0

. Call boundary condition procedure
#call PLATE_BC ( nn_x = <nn_x>; -- . to set up loads and b.c.’s
nn_total = <nn_total> )

[xqt AUS

sdef/e g = 3.84616e+6 ‘
TABLE(NI=16,8J=3): OMB DATA 1 1 . Define material properties
1=1,2,3,4,5,6,7,8,9
J=1: 10.0E+6 .30 10.0E+6 <g> <g> <g> 0.0 0.0 .1
. Define Section properties
TABLE (NI=3,NJ=1,itype=0): LAM OMB 1 1
J=1 : 2 .1 0.00
[xqt LAU . Form constitutive matrix
*if <ifeqs([es_name]; E43)> /then
reset SPAR=-1

»endif
[xqt ELD . Define elements
»if <ifeqs([es_namel; E43)> /then
E43 . E43 elements
*else
NOTE -- The macrosymbols es_nip, es_nstr, es_nen, and es_opt

were globally defined by procedure ES the first time
the procedure was called.

sdef/i nst = <<es_nip>*<es_nstr>> . Number of stress resultants
EXPE [es_name] <es_nen> <es_opt> <es_nen> 6 <nst> 1 101 2

*endif
NSECT = 1

*if < <es_nen> /eq 4 > /then
. Use 4-node element mesh generator

*def/i j1 = 1
sdef/i j2 = 2
rdef/i j3 = <<j2>+<nn_x>>
sdef/i j4 = <<ji>+<nn_x>>

. Element connectivity for 4-node elts
<j1> <j2> <j3> <j4> 1 <[NEL_x]> <[NEL_yl>

*glseif < <es_nen> /eq 9 > /then
. Use 9-node element mesh generator
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sdef/i j1 = 1
*def/i j5 = 2
*def/i j2 = 3

sdef/i j8 = <<j1> + <nn_x>>
sdef/i j9 = <<j6> + <nn_x>>
*def/i jB = <<j2> + <nn_x>>
wdef/i j4 = <<j8> + <nn_x>>
sdef/i j7 = <<j9> + <nn_x>>
wdef/i j3 = <<j6> + <nn_x>>

. Element connectivity for 9-node elts

<j1> <j2> <j3> <j4> <35> <j6> <j7> <j8> <j9> 1 <[NEL_x]> <[NEL_y]>

sendif

*end

sprocedure PLATE_BC ( nn_x ; nn_total )

{xqt TAB

CONSTRAINT DEFINITION 1 . Constraints
symm plane=1 . Plane 2,3 plane of symmetry
symm plane=2 . Plane 1,3 plane of symmetry
zero 3: 1 . Constrain center w

nonzero 1 : [nn_x],[nn_totall,[nn_x] . Apply displacement at x=1x edge

[xqt AUS . Form applied loading
sysvec : appl moti
i=1: J=[nn_x],[nn_totall,[nn_x]: -0.001

*end

1.8.3.2 The Linear Static Analysis Procedure

The following procedure performs the linear static analysis for models using either SPAR
E43 elements or elements implemented using the generic element processors. The procedure

will be kept in a file named L_STATIC.CLP.

sprocedure L_STATIC (es_name)

[xqt E . Initialize all element datasets

stop
*open 1
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»if <ifeqs([es_name]; E43)> /then . Form intrinsic stiffness matrices
[xqt EKS . for E43
*else
*call ES (Iunction=’INITIALIZE’)
#call ES (function=’FORM STIFFNESS/MATL’) . for other elements
*endif
[xqt RSEQ . Resequence
[xqt TOPO . Create maps
[xqt K . Assemble system stiffness matrix
[xqt INV . Factor stiffness matrix
online=2
[xqt SSOL . Solve for static displacements
stop
*open 1
. Calculate stresses
#if <ifeqs([es_name]; E43)> /then . for E43
[xqt GSF
{xqt PSF
reset display=2
*else . for other elements
%*call ES ( function = *FORM STRESS’; es_dis_ds = STAT.DISP.1.1 )
sendif
[xqt VPRT . Print displacements
format=4
print STAT DISP
send

1.6.3.3 The Execution Control File

The following file, FLATPLATE. COM, contains no procedures; it adds the two procedure files
and calls the model generation and analysis procedures, PLATE_MODEL and L_STATIC.

$ testbed ! Execute Testbed macroprocessor
*set echo off

*open 1 flat_plate.101 . Open data library

sadd flatplate.prc . Add procedure files BEFORE calls

*add 1_static.clp
. Generate model
#call PLATE_MODEL ( es_proc=ES1; es_name=Ex97;--
nel_x=4; nel_y=4 )
. Solve for static solution
#call L_STATIC ( es_name=Ex97 )

{xqt EXIT . Exit macroprocessor

It should be emphasized that the procedure L_STATIC may be used for any linear, static
analysis using either the original SPAR elements or elements implemented using one or
more of the Independent Element Processors. The procedure is not limited to SPAR E43
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elements as no element specific operations are being performed; element specific operations
are performed in the model definition procedure(s).

By splitting the analysis into procedures, the model generation and solution have been
decoupled allowing the solution procedure to be used for many different models. The
advantages of this approach include the fact that a solution procedure need only be written
once rather than once for each problem. It is highly recommended that the user organize
procedures in this fashion.
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Preprocessing Procedures

2.0 Preprocessing

Procedures

The five procedures documented in this chapter are general modeling procedures for specific

structural geometries.

Table 2.0-1 Summary of Preprocessing Procedures

Procedure Name

Preprocessing Function

GEN_BEAM

Generate 1-D models of straight beams using beam
elements

GEN_CANTILEVER

Generate 2-D models of a straight cantilever beam

using plate/shell elements. Using the default values
for the procedure arguments, the straight cantilever
beam problem from the MacNeal-Harder test cases is

generated.

GEN_CURVED_BM

Generate 2-D models of a curved (circular) beam us-

ing plate/shell elements. Using the default values for
the procedure arguments, the curved beam problem

from the MacNeal-Harder test cases is generated.

GEN_PLATE Generates 2-D models for general quadrilateral
plates.
GEN_SHELL Generates 2-D models for general shells and curved

surfaces.
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Generic 1-D Beams

2.1 Procedure GEN_BEAM

2.1.1 GENERAL DESCRIPTION

This section describes a procedure which generates models of a straight beam using one-

dimensional beam elements.
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2.1.2 PROCEDURE USAGE

Procedure GEN_BEAM may be used by preceding the procedure name by the *call directive,
and following it by a list of arguments enclosed in parentheses. Procedure arguments are
order-independent, and most have default values thus making them optional. The formal
syntax is as follows:

*call GENBEAM ( argl = vall ; arg2 = val2 ; ...)

where argl and arg?2 represent argument names, and vall and val2 represent their cor-
responding values. Note that semi-colons are required between arguments, and a double
dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure GEN_BEAM are summarized in the following table,
along with their default values (if they exist). Note that arguments without defaults are
generally mandatory, while those with defaults are generally optional. Exceptions to this
rule are noted in the following section under detailed argument descriptions.

Argument Default Value Meaning

ES_PROC ES6 Select element processor
ES_NAME E210 Select element within ELT_PROC
NODES_X 3 Number of nodes in x-direction
LENGTH_X 10. Length of beam

E 120. Young’s elastic modulus

NU 0. Poisson’s ratio

AREA 1.0 Cross-sectional area

INERT.1 1. Principal moment of inertia, I
INERT.2 10. Principal moment of inertia, I3
INERT_TORSIONAL 1. Uniform torsion constant
BC_PROCEDURE BEAM_BC Procedure for boundary conditions

2.1.3 ARGUMENT DESCRIPTIONS

2.1.3.1 AREA

Cross-sectional area of beam (default: 1.0).

2.1.3.2 BC_PROCEDURE

Boundary condition procedure name (default: CC_BC for specified forces; CCD_BC for spec-
ified displacements). The term “boundary conditions” refers both to displacement con-
straints and applied loading. Procedures CC_BC and CCD.BC both have the same zero
displacement constraints. The only difference is that the former procedure applies axial
forces to the simply supported edge, while the latter procedure prescribes non-zero axial
displacements on that edge. The argument BC_PROCEDURE permits you to to supply your
own boundary condition procedure, but keep in mind that this may drastically change the
problem definition, and hence invalidate most of the discussion under Section 2.1.1.
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2.1.3.3 E
Young’s elastic modulus (default: 120.0).

2.1.3.4 ES_NAME

Element name (default: E210). This is the name of the specific beam-element type you wish
to select, within the element processor defined by argument ES_PROC. The default element
type, E210, is a 2-noded beam element implemented in processor ES6, and described in
The Computational Structural Mechanics Testbed User’s Manual (see ref. 2.1-1).

2.1.3.5 ES_PROC

Element Processor (default: ES6) This is the name of the structural element (ES) processor
that contains the shell element type you wish to employ in the model. The default shell-
element, processor ES6, is described in The Computational Structural Mechanics Testbed
User’s Manual.

2.1.3.6 INERT.1

Principal moment of inertia (default: 1.0).

2.1.3.7 INERT. 2
Principal moment of inertia (default: 10.0).

2.1.3.8 INERT_TORSION

Torsional constant (default: 1.0).

2.1.3.9 LENGTH.X
Length of the beam in the x-direction (default: 10.0).

2.1.3.10 NODES_X

Number of nodes along beam length (default: 3). Note that this number should be con-
sistent with the number of nodes per element. For example, NODES X can be any number
greater than 1 for 2-node beam elements, whereas it must be an odd number greater than
1 for 3-node beam elements.

2.1.3.11 NNODES.C

Number of circumferential nodes (default: 7). This is the number of nodes you wish
to have along the circumferential direction of the cylindrical shell model, i.e., along 15
degrees of circular arclength. Note that this number should be consistent with the number
of nodes per element. For example, NNODES_C can be any number greater than 1 for 4-
node quadrilateral elements, whereas it must be an odd number greater than 1 for 9-node

quadrilateral elements.
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2.1.3.12 NU
Poisson’s ratio (default: 0.0).

2.1.4 USAGE GUIDELINES AND EXAMPLES

Procedure GEN_BEAM may be used by preceding the procedure name by the xcall directive.
Procedure arguments may be changed from their default values by including any or all
of the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis. If the default
values of the procedure arguments are to be used, then only the procedure name is required.

*procedure GEN_BEAM ( es_proc = ES6 ; es_name = E210 ; --

nodes_x =3 s

length_x =10, ;--

E=120.; PR=0. ; area =10 ; --
inert_1=1. ; inert_2=10. ; inert_torsion=1. ;--

BC_PROCEDURE = BEAM_BC )

(E1) To perform an entire analysis using the default options, simply invoke the procedure
without any arguments, i.e.,

*xcall GEN_BEAM

2.1.5 LIMITATIONS

2.1.6 ERROR MESSAGES AND WARNINGS

None.

2.1.7 PROCEDURE FLOWCHAilT

2.1.8 PROCEDURE LISTING

»procedure GEN_BEAM ( es_proc = ES6 ; es_name = E210 ; --

nodes_x =3 ot

length_x =10. ;--

E=120.; PR=0. ; area =1.0 ; --
inert_i=z1. ; inert_2=10. ; inert_torsion=1. ;--

BC_PROCEDURE = BEAM_BC )
#call ES_DEFN ( es_proc=[es_proc]; es_name=[es_name]
[XQT TAB
*def nodes_tot = < [nodes_x] >
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‘ START <nodes_tot>
JLOC

I . DEFINE NODAL COORDINATES

| s«det/e dx = < [length_xj / {{nodes_x1-1) >
‘ «def/i node = 0
»def/e x = 0.
=do $¢i = 1,[nodes_x]
sdef node = < <node> + 1 >
<node> <x>, 0., O. . NODE DEFINITION
sdef x = < <x> + <dx> >
senddo

. DEFINE FICTITIOUS ELASTIC MATERIAL PROPERTIES

.

MATC
1 [E] [PR]

. BEAM FACE ORIENTATION AND PROPERTIES
MREF
FORMAT=2
i 1 0. 1.0 0.

BA
GIVN 1 [inert_1] 0. [inert_2] 0. [area] [inert_torsion]

. DEFINE LOADS AND BOUNDARY CONDITIONS

scall [BC_PROCEDUREl ( nnx = [nodes_x] ; --
nen = <es_nen> )

. GENERATE ELEMENTS
[xQT ELD

<es_expe_cnd>
NSECT = 1

Define element nodal connectivity

scall BM_ELT_CONN (nnx=[nodes_x]; nen=<es_nen>)

*ond
. =DECK BM_ELT_CONN
sprocedure BM_ELT_CONN ( nnx; nen )

11 1
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*if < [nen] /eq 2 > /then
*do $ix = 1, <[nnx]}-1>

sdef/i n1
=def/i n2

1> <n2>

*enddo

< $ix >
<<ni>+ 1 >

selseif < [nen] /eq 3 > /then
»do $ix = 1, <[nnx]-2>, 2

*def/i n1 = < $ix >
»def/i n2 = < <ni> + 2>
sdef/i n3 = < <n2> - 1>
ZESETTRSE=S=I==SSS

*enddo
*endif
=ond

2.1.9 REFERENCES

2.1-1 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User’s
Manual. NASA TM-100644, October 1989.
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2.2 Procedure GEN_CANTILEVER

2.2.1 GENERAL DESCRIPTION

This section describes a procedure which generates models of a straight cantilever beam
using two-dimensional plate/shell elements. Using the default values for the procedure
arguments, the straight cantilever beam problem from the MacNeal-Harder test cases (see
ref. 2.2-1) is generated. The model used for the MacNeal-Harder cantilever beam test
cases, is shown in figure 2.2-1.

y-axis

2 L o

L2l

' Y
l [ | 1 L _h J—>
I

rectangular elements

N © >\ /< 8
§1 N 7 N 7 1 ]
' trapezoidal elements
\8
/ 7/ A 7 /7 |
J

parallelogram elements

DIMENSIONS : h=.2, L =6, Thickness =.1

MAT=RIAL PROPERTIES : E=10 X107, v =230

Figure 2.2-1 Generic 2-D Cantilever Beam Finite Element Models.
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2.2.2 PROCEDURE USAGE

Procedure GEN_CANTILEVER may be used by preceding the procedure name by the *call
directive, and following it by a list of arguments enclosed in parentheses. Procedure ar-
guments are order-independent, and most have default values thus making them optional.
The formal syntax is as follows: 1

»call GEN_CANTILEVER ( argl = vall ; arg2 = val2 ; ...)

where argl and arg2 represent argument names, and vall and val2 represent their cor-
responding values. Note that semi-colons are required between arguments, and a double
dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure GEN_CANTILEVER are summarized in the following
table, along with their default values (if they exist). Note that arguments without defaults
are generally mandatory, while those with defaults are generally optional. Exceptions to
this rule are noted in the following section under detailed argument descriptions.

Argument Default Value Meaning

ES_PROC ES2 Select element processor
ES_NAME EX41 Select element with ELT_PROC
ES_PARS 0.0 Set element-research parameters
AUTO_DOF_SUP true Automatic d.of. suppression
DRILLING_DOF false

NODES X 7 Number of nodes in x-direction
NODES_Y 2 Number of nodes in y-direction
LENGTH.X 6. ; Beam length (x-direction)
LENGTH_Y .2 " Beam width (y-direction)

E 1.E7 Young’s elastic modulus

NU .3 Poisson’s ratio

THICKESS .1 Thickness

DISTORT .07071

BC_PROCEDURE CANTILEVER_BC Procedure for boundary conditions

2.2.3 ARGUMENT DESCRIPTIONS

2.2.3.1 AUTO.DOF._SUP

Automatic degree of freedom suppression flag (default: <true>). This option provides a
convenient way of suppressing any freedoms that do not have any (or adequate) stiffness
associated with them — for example, at nodes used to prescribe geometry only; or drilling
freedoms in fine meshes composed of elements without normal rotational stiffnesses (see
argument DRILLING_DOF).
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2.2.3.2 BC_PROCEDURE

Boundary condition procedure name (default: CANTILEVER _BC). The term “boundary con-
ditions” refers both to displacement constraints and applied loading. The argument
BC_PROCEDURE permits the users to supply their own boundary condition procedure, but
keep in mind that this may drastically change the problem definition.

2.2.3.3 DISTORT
Distorted mesh parameter (default: 0.07071).

2.2.3.4 DRILLING_DOF

Drilling degree of freedom flag (default: <false>). Drilling freedoms are defined as rota-
tions normal to the surface of the shell. Leaving this flag off forces all drilling freedoms
in the model to be suppressed. Turning it on forces all drilling freedoms to be active —
unless they are automatically suppressed using use of the AUTO_DOF_SUP argument. Note
that while many shell elements do not have any rotational stiffness associated with their
own surface-normal directions (at nodes), when shell elements are assembled as facets ap-
proximating an arbitrary shell surface, there is usually some misalignment between the
element normal and the actual shell normal. This is especially true of “flat” (e.g., 4-node)
elements. Hence, some rotational stiffness about the skell normal is usually present in
the model. (A clear exception to this is a flat plate, where element and shell normals
are identical.) For a cylindrical shell, the misalignment diminishes only as the number of
elements is increased. Most shell elements in the Testbed have their own misalignment
tolerance parameter, which determines when the AUTO_DOF_SUP argument will automati-
cally suppress the drilling freedom. Note that for elements which have drilling stiffness,
the DRILLING_DOF argument should be set to <true> regardless of how AUTO_DOF_SUP is
set.

2.2.3.5 E
Young’s elastic modulus (default: 1.0 x 107).

2.2.3.8 ES_NAME

Element name (default: EX41). This is the name of the specific shell-element type you
wish to select, within the element processor defined by argument ES_PROC. The default
shell-element type, EX41, is a 4-noded quadrilateral element implemented in Processor
ES2, and described in The Computational Structural Mechanics Testbed User’s Manual

(see ref. 2.2-1).

2.2.3.7 ES_PARS

Element research parameters (default: 0., ...). This argument allows an optional list of
element-dependent parameters that some elements provide, primarily when the element is

still undergoing research and refinement.
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2.2.3.8 ES_PROC

Element processor (default: ES2) This is the name of the structural element (ES) processor
that contains the shell element type you wish to employ in the model. The default shell-
clement, processor ES2, is described in The Computational Structural Mechanics Testbed
User’s Manual.

2.2.3.9 NODES.X

Number of nodes along x-direction (default: 7). This is the number of nodes you wish to
have along the axial direction of the beam shell model. Note that this number should be
consistent with the number of nodes per element. For example, NODES_X can be any number
greater than 1 for 4-node quadrilateral elements, whereas it must be an odd number greater
than 1 for 9-node quadrilateral elements.

2.2.3.10 NODES.Y

Number of nodes along y-direction (default: 2). This is the number of nodes you wish to
have along the depth direction of the beam shell model. Note that this number should be
consistent with the number of nodes per element. For example, NODES_Y can be any number
greater than 1 for 4-node quadrilateral elements, whereas it must be an odd number greater
than 1 for 9-node quadrilateral elements.

2.2.3.11 NU

Poisson’s ratio (default: 0.3).

2.2.3.12 THICKNESS
Beam thickness (default: 0.1).

2.2.4 USAGE GUIDELINES AND EXAMPLES

Procedure GEN_CANTILEVER may be used by preceding the procedure name by the xcall
directive. Procedure arguments may be changed from their default values by including any
or all of the arguments and their new values when the procedure is called. A space or blank
is required between the end of the procedure name and the left parenthesis. If the default
values of the procedure arguments are to be used, then only the procedure name is required.

»*call GEN_CANTILEVER ( es_proc ES2 ; es_name = EX41 ; --

es_pars 0.0 ; --

auto_dof_sup = <true> ; --

drilling_dof = <false> ; --

nodes_x =7 ; nodes_y = 2 HE

length_x =6. ; length.y = .2 ; --

E=1.E7 ; NU=.3 ; thickness = .1 ; --
distort =,07071; --

BC_PROCEDURE = CANTILEVERLEVER_BC )
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(E1) To perform an entire analysis using the default options, simply invoke the procedure
without any arguments, i.e.,

*call GEN_CANTILEVER

2.2.5 LIMITATIONS

2.2.6 ERROR MESSAGES AND WARNINGS

None.

2.2.7 PROCEDURE FLOWCHART

2.2.8 PROCEDURE LISTING

sprocedure GEN_CANTI ( es_proc ES2 ; es_name = EX41 ; --

es_pars 0.0 ; ~-

auto_dof_sup = <true> ; --

drilling_dof = <false> ; --

nodes_x =7 ; nodes_y = 2 ; -
length_x = 6. ; length.y = .2 ; --
E=1.E7 ; NU=.3 ; thickness = ,1 3 --
distort =.,07071; --

BC_PROCEDURE = CANTILEVER_BC )

*call ES ( function = ’DEFINE ELEMENTS’ ; es_proc = [es_procl; --
es_name = [es_name] ; es_pars = [es_pars] )
[XQT TAB
sdef nodes_tot = < [nodes_x] * [nodes_y] >
START <nodes_tot>
JLOC

. DEFINE NODAL COORDINATES

sdef/e dx = < [length_x] / ([nodes_x]-1) >
sdef/e dy = < [length_y]l / ([nodes_yl-1) >
*def/i node = 0

s*det/e y = 0.

sdef/e skew = < -1. = [distort] >

sdef/e dskew = < 2.0 » [distort] / ([nodes_yl-1) >

»do $j = 1,[nodes_y]
*def/e x = 0.
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=do $¢i = 1,[nodes_x]
*def node = < <node> + 1 >
<node> <x>, <y>, 0. . NODE DEFINITION
#def x = < <x> + <dx> >
»if < <$i> /eq 1 > /then
sdef x = < <x> + <skew> >
#endif
»if < <$i> /eq <[nodes_x]-1> > /then
»def x = < [length_x] >
*endif
senddo
sdef y = < <y> + <dy> >
sxdef skew = < <skew> + <dskew> >
*enddo

. DEFINE FICTITIOUS ELASTIC MATERIAL PROPERTIES

MATC
11.0 .3

. DEFINE LOADS AND BOUNDARY CONDITIONS

scall [BC_PROCEDURE] ( nnx = [nodes_x] ; mny = [nodes_y] ; --
nen = <es_nen> ; drilling_dof = [drilling_dof] )

. DEFINE REAL MATERIAL/SECTION PROPERTIES
[XQT AUS

. Build Table of Material Data
TABLE(NI=16,NJ=1): OMB DATA 1 1

sdef/e12.4 G = < [E] / (2.+(1.+[NU])) >
1=1,2,3,4,5,8
J=1
[(E] [NU] [E] <G> <G> <G>
. Build Laminate Data Tables
TABLE(NI=3,NJ=1,ITYPE=0): LAM OMB 1 1
I=1,2,3 . (material_type, layer_thickness, angle(deg.)
J=1: 1 [THICKNESS] 0.0
[XQT LAU
. GENERATE ELEMENTS
[xQT ELD

Define number of integration (stress) points based on element type

»def/i nst = < <es_nip>*<es_nstr> >
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Define element attributes
<ES_EXPE_CMD>
NSECT = 1

Define element nodal connectivity

»call CANTI_ELT_CONN (nnx=[nodes_x]; nny=[nodes_y]; nen=<es_nen>)

- - - > - - - " - - - o - - - . - - -

*if < [AUTO_DOF_SUP] > /then
scall ES ( function = 'DEFINE FREEDOMS’ )
sendif

*end
sprocedure CANTI_ELT_CONN ( nnx; nny; nen )

»it < [nen] /eq 4 > /then
»do $iy = 1, <[nnyl-1>
sdo $ix = 1, <[nnx]-1>
sdet/i n1 = < (<$iy>-1)¢[nnx] + <$ix> >
sdef/i n2 = < <ni>+ 1 >
sdef/i n3 = < <n2> + [nnx] >
sdef/ing = < <n3> - 1 >

*enddo
*enddo
selseif < [nen] /eq 9 > /then
*do $iy = 1, <[nnyl-2>, 2
*do $ix = 1, <[nnx]-2>, 2

sdef/i n1 = < (<$iy>-1)*[nnx] + <$ix> >
sdef/i n2 = < <ni1> + 2>

#def/i n3 = < <n2> + (2+[nnx]) >
sdef/i nd = < <n3> - 2>

sdef/i nb = < <n1> + 1>

edef/i n6 = < <n2> + [nnx] >

sdef/i n7 = < <nd> + 1>

sdef/i n8 = < <n6> - 2>

sdef/i n9 = < <n8> + 1>

—memmmsm e == ——
Pt R L L E b e R bl bbbl k]
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senddo
senddo
sendif
*ond

2.2.9 REFERENCES

2.2-1 MacNeal, R. H.; and Harder, R. L.: “A Proposed Set of Problems to Test Finite
Element Accuracy,” Finite Elements in Analysis and Design, Vol. 1, 1985, pp. 3-20.

2.2-2 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User’s
Manual. NASA TM-100644, October 1989.
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2.3 Procedure GEN_CURVED BM

2.3.1 GENERAL DESCRIPTION

This section describes a procedure which generates models of a curved (circular) beam
using two-dimensional plate/shell elements. Using the default values for the procedure
arguments, the curved beam problem from the MacNeal-Harder test cases (see ref. 2.3-1)
is generated. The MacNeal-Harder curved beam test case is shown in figure 2.3-1.

PROBLEM Curved Beam
DIMENSIONS : Inner radius = 4.12 Quter radius = 4.32
Thickness = .1

MATERIAL PROPEATIES : E= 1X10 v = 25
I0UNDARY CONDITICNS : Canielever beam fixed at y=0
LOADING : Unit forces apolied at free end;

1) in-plane (verical) -- y-direction (case 1)
2) out-ct-olane - z-ciracticn {case 2)

Figure 2.3-1 Generic 2-D Curved Beam Problem.
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2.3.2 PROCEDURE USAGE

Procedure GEN_CURVED_BM may be used by preceding the procedure name by the #*call
directive, and following it by a list of arguments enclosed in parentheses. Procedure ar-
guments are order-independent, and most have default values thus making them optional.
The formal syntax is as follows:

#call GEN_CURVED BM ( argl = vall ; arg2 = val2 ; ...)

where argt and arg2 represent argument names, and vall and val2 represent their cor-
responding values. Note that semi-colons are required between arguments, and a double
dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure GEN_CURVED_BM are summarized in the following
table, along with their default values (if they exist). Note that arguments without defaults
are generally mandatory, while those with defaults are generally optional. Exceptions to
this rule are noted in the following section under detailed argument descriptions.

Argument Default Value Meaning

ES_PROC ES2 Select element processor

ES_NAME EX41 Select element within ELT_PROC
ES_PARS 0.0 Set element-research parameters
AUTO_DOF_SUP <true> Automatic d.o.f. suppression
DRILLING_DOF <false>

NODES_T 7 Number of nodes in tangential direction
NODES.R 2 Number of nodes in radial direction
RIN 4.12 Inner radius

ROUT 4.32 Outer radius

E 1.E7 Young’s elastic modulus

NU .25 ' Poisson’s ratio

THICKNESS 1 Thickness

BC_PROCEDURE CURVED_BC Procedure for boundary conditions

2.3.3 ARGUMENT DESCRIPTIONS

2.3.3.1 AUTQ_DOF_SUP

Automatic degree of freedom suppression flag (default: <true>). This option provides a
convenient way of suppressing any freedoms that do not have any (or adequate) stiffness
associated with them — for example, at nodes used to prescribe geometry only; or drilling
freedoms in fine meshes composed of elements without normal rotational stiffnesses (see
argument DRILLING_DOF).
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2.3.3.2 RBRC_PROCEDURE

Boundary condition procedure name (default: CURVED_BC). The term “boundary con-
ditions” refers both to displacement constraints and applied loading. The argument
BC_PROCEDURE permits you to to supply your own boundary condition procedure, but
keep in mind that this may drastically change the problem definition.

2.3.3.3 DRILLING_DOF

Drilling degree of freedom flag (default: <false>). Drilling freedoms are defined as rota-
tions normal to the surface of the shell. Leaving this flag off forces all drilling freedoms
in the model to be suppressed. Turning it on forces all drilling freedoms to be active —
unless they are automatically suppressed using use of the AUTO_DOF_SUP argument. Note
that while many shell elements do not have any rotational stiffness associated with their
own surface-normal directions (at nodes), when shell elements are assembled as facets ap-
proximating an arbitrary shell surface, there is usually some misalignment between the
element normal and the actual shell normal. This is especially true of “flat” (e.g., 4-node)
elements. Hence, some rotational stiffness about the shell normal is usually present in
the model. (A clear exception to this is a flat plate, where element and shell normals
are identical.) For a cylindrical shell, the misalignment diminishes only as the number of
elements is increased. Most shell elements in the Testbed have their own misalignment
tolerance parameter, which determines when the AUTO_DOF_SUP argument will automati-
cally suppress the drilling freedom. Note that for elements which have drilling stiffness,
the DRILLING_DOF argument should be set to <true> regardless of how AUTO_DOF_SUP is
set.

2.3.3.4 E
Young’s elastic modulus (default: 1.0 x 107).

2.3.3.5 ES_NAME

Element name (default: EX41). This is the name of the specific shell-element type you
wish to select, within the element processor defined by argument ES_PROC. The default
shell-element type, EX41, is a 4-noded quadrilateral element implemented in Processor
ES1, and described in The Computational Structural Mechanics Testbed User’s Manual
(see ref. 2.3-1).

2.3.3.6 ES_PARS

Element research parameters (default: 0., ...). This argument allows an optional list of
element-dependent parameters that some elements provide, primarily when the element is
still undergoing research and refinement.

2.3.3.7 ES_PROC

Element processor (default: ES2) This is the name of the structural element (ES) processor
that contains the shell element type you wish to employ in the model. The default shell-
element, processor ES2, is described in The Computational Structural Mechanics Testbed

User’s Manual.
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2.3.3.8 NODES_R

Number of radial nodes (default: 2). This is the number of nodes you wish to have along the
radial direction of the curved beam shell model. Note that this number should be consistent
with the number of nodes per element. For example, NODES_R can be any number greater
than 1 for 4-node quadrilateral elements, whereas it must be an odd number greater than
1 for 9-node quadrilateral elements.

2.3.3.9 NODES_T

Number of tangential nodes (default: 7). This is the number of nodes you wish to have
along the tangential direction of the curved beam shell model. Note that this number
should be consistent with the number of nodes per element. For example, NODES_T can be
any number greater than 1 for 4-node quadrilateral elements, whereas it must be an odd
number greater than 1 for 9-node quadrilateral elements.

2.3.3.10 NU
Poisson’s ratio (default: 0.25).

2.3.3.11 RIN

Inner radius of curved beam (default: 4.12).

2.3.3.12 ROOT
Outer radius of curved beam (default: 4.32).

2.3.3.13 THICKNESS
Beam thickness (default: 0.1).

2.3.4 USAGE GUIDELINES AND EXAMPLES

Procedure GEN_CURVED_BM may be used by preceding the procedure name by the *call
directive. Procedure arguments may be changed from their default values by including
any or all of the arguments and their new values when the procedure is called. A space or
blank is required between the end of the procedure name and the left parenthesis. If the
default values of the procedure arguments are to be used, then only the procedure name
is required.

»procedure GEN_CURVED_BM (elt_proc = ES2 ; elt_name = EX41 ; --
elt_pars = 0.0 ; --
auto_dof_sup = <true> ; --
drilling_dof = <false> ; --
nodes_t =7 ; nodes_.r = 2 i
rin = 4.12 ; rout = 4,32 ;-
E=1.E7 ; PR=.25 ; thick = .1 ; ~--
BC_PROCEDURE = CURVED_BC )
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(E1) To perform an entire analysis using the default options, simply invoke the procedure
without any arguments, t.e.,

*call GEN_.CURVED_BM

2.3.5 LIMITATIONS

2.3.6 ERROR MESSAGES AND WARNINGS

None.

2.3.7 PROCEDURE FLOWCHART

2.3.8 PROCEDURE LISTING

sprocedure GEN_CURVED (es_proc = ES2 ; es_name = EX41 ; --
es_pars = 0.0 ; --
auto_dof_sup = <true> ; --
drilling_dof = <false> ; --
nodes_t =7 ; nodes_r = 2 ; --
rin = 4,12 ; rout = 4,32 I
E=1.E7 ; NU=.256 ; thickness = .1 ; --

BC_PROCEDURE = CURVED_BC )

ecall ES ( function = ’DEFINE ELEMENTS’ ; es_proc = [es_procl; --
es_name = [es_name] ; os_pars = [es_pars] )
[XQT TAB
¢def nodes_tot = < [nodes_t] * [nodes_r] >
START <nodes_tot>

JLoc
FORMAT = 2 . use cylindrical coordinate system

. DEFINE NODAL COORDINATES

sdet/e dx = < 90. / ([nodes_t]-1) >

*def/e dy < < [rout] - [rin] > / ([nodes_r]-1) >
*def/i node = 0

sdet/e r = [rin]

[}

sdo $j = 1,[nodes_r]
sdef/e theta = 90.
edo $i = 1,[nodes_t]
sdef node = < <node> + 1 >
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<node> <r>, <theta>, 0. . NODE DEFINITION
sdef theta = < <theta> - <dx> >
senddo
*def r = < <r> + <dy> >
*enddo

. DEFINE FICTITIOUS ELASTIC MATERIAL PROPERTIES

T T I Y YT Y I T
TS=SSESZSSRSRSZESRS=E==S

Y T T T T T T

JREF . Use local cylindrical basis vectors
for nodal DOFS:
. u,v,w = radial, circumfer., axial
NREF = -1
1 <nodes_tot> . same convention for all nodes

. DEFINE LOADS AND BOUNDARY CONDITIONS

«call [BC_PROCEDURE] ( nnx
nen

[nodes_t] ; nny = [nodes_r] ; --
<es_nen> ; drilling_dof = [drilling_dof] )

"

. DEFINE REAL MATERIAL/SECTION PROPERTIES
[(xQT aUs

. Build Table of Material Data
TABLE(NI=16,NJ=1): OMB DATA 1 1

»def/e12.4 G = < [E] / (2.+(1.+[NU])) >

1=1,2,3,4,5,6
J=1
[E] [NU] [E] <G> <G> <G>

. Build Laminate Data Tables

TABLE(NI=3,NJ=1,ITYPE=0): LAM OMB 1 1

I=1,2,3 . (material_type, layer_thickness, angle(deg.)
J=1: 1 [THICKNESS] 0.0

[XQT LAU

. GENERATE ELEMENTS

[xQT ELD
. Define number of integration (stress) points based on element type
edef/i nst = < <es_nip>*<_nstr> >
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Define element attri
<ES_EXPE_CMD>
NSECT = 1

Define element nodal

butes

connectivity

#*call CURV_ELT_CONN (nnx=[nodes_t]; nny=[nodes_r}; nen=<es_nen>)

-k - ——

Suppress DOFs not supported by elements

*«if < [AUTO_DOF_SUP]

#call ES ( function

sendif
=end
sprocedure CURV_ELT_CONN (

> /then
'DEFINE FREEDONS®

)

nnx; nny; nen )

. Define Element Connectivi

ty Record for ELD Processor

*if < [nen] /eq 4 > /then
sdo $iy = 1, <[nmnyl-1>
*do $ix = 1, <[nnx]-1>
sdet/i n1 = < (<$iy>-1)#[nnx] + <$ix> >
*def/i n2 = <<n1>+ 1 >
sdef/i n3 < <n2> + [nnx] >
*def/ingd = < <n3> - 1 >
<n1> <n2> <n3> <né>
senddo
*aenddo
*elseif < [nen] /eq 9 > /then
*do $iy = 1, <[nnyl-2>, 2
*do $ix = 1, <[nnx]-2>, 2
sdet/i n1 = < (<$iy>-1)s[nnx] + <$ix> >
*def/i n2 = < <n1> + 2 >
*def/i n3 = < <n2> + (2+[nnx]) >
sdef/i nd = < <n3> - 2>
sdet/i nb = < <n1> + 1>
#det/i n6 = < <n2> + [nnx] >
*def/i n7 = < <nd> + 1>
»def/i n8 = < <né> - 2>
#def/i n9 = < <n8> + 1>
<n1> <n2> <n3> <n4> <nb> <né> <n7> <n8> <n9>
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wenddo
senddo
sendif
*ond

2.3.9 REFERENCES

2.3-1 MacNeal, R. H.; and Harder, R. L.: “A Proposed Set of Problems to Test Finite
Element Accuracy,” Finite Elements in Analysis and Design, Vol. 1, 1985, pp. 3-20.

2.3-2 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User’s
Manual. NASA TM-100644, October 1989.
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2.4 Procedure GEN_PLATE

2.4.1 GENERAL DESCRIPTION

Procedure GEN_PLATE is used to generate flat or warped 4-sided plate finite element models.
The plate edges are defined to be straight with the surface defined as the bi-linearly
interpolation of the edges. This type of interpolated surface is also known as a Coon’s
surface (see refs. 2.4-2 and 2.4-3).

2.4.2 PROCEDURE USAGE

Procedure GEN_PLATE may be used by preceding the procedure name by the *call directive,
and following it by a list of arguments enclosed in parentheses. Procedure arguments are
order-independent, and most have default values thus making them optional. The formal
syntax is as follows:

*xcall GEN_PLATE ( argl = vall ; arg2 = val2 ; ...)

where argl and arg?2 represent argument names, and vall and val2 represent their cor-
responding values. Note that semi-colons are required between arguments, and a double
dash (--) preceded by a space may be used to continue the argument list on the next line.

The allowable arguments for procedure GEN_PLATE are summarized in the following table,
along with their default values (if they exist). Exceptions to this rule are noted in the
following section under detailed argument descriptions.
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Argument Default Value
ES_PROC ES1
ES_NAME EX97
ES_PARS 0.0
XYZ1 1,0,0
XYZ2 1,0,1
XY23 1,90,1
XYZ4 1,90,0
NODES_1 7
NODES_2 7
EDGE_WEIGHTS 1,1,1,1
BC_PROCEDURE y 2
DRILLING_DOF <true>
AUTO_DOF_SUP <true>
SECTION_PRC LR
NSECT 1

E 30.E6
NU 0.3
WIDEN 0.1
THICKNESS .1

2.4.3 ARGUMENT DESCRIPTIONS

2.4.3.1 AUTO_DOF_SUP

Meaning

Generic element processor
Generic element name
Element research parameters

Cartesian coordinates of point 1.
Cartesian coordinates of point 2.
Cartesian coordinates of point 3.
Cartesian coordinates of point 4.
Number of nodes along edge 1
Number of nodes along edge 2
including duplicate nodes if plate closes
Plate section property procedure
Boundary condition procedure
Drilling dof suppression flag
Automatic dof suppression flag
Plate section property procedure

Plate section property number
The following values not used if SECTION_PRC is specified.

Young’s Modulus
Poisson’s ratio
Weight Density
Plate thickness

Automatic degree of freedom suppression flag (default: <true>). This option provides a
convenient way of suppressing any freedoms that do not have any (or adequate) stiffness
associated with them — for example, at nodes used to prescribe geometry only; or drilling
freedoms in fine meshes composed of elements without normal rotational stiffness (see

argument DRILLING_DOF).

2.4.3.2 BC.PROCEDURE

Name of user provided boundary condition procedure (default: > ’). The term “boundary
conditions” refers both to displacement constraints and applied loading. If a boundary
conditions procedure is provided, the following call will be performed. The macrosymbol

<es_nen> equals the number of element nodes.

*call [BC_PROCEDURE] ( nodes_1
nodes_2
es_nodes

[nodes_1]
[nodes_2]
<es_nen>

.
’
.
»

drilling_dof = [drilling dof] )

No action is taken if a boundary condition procedure name is not provided.

2.4-2 CSM Testbed Procedures Manual
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2.4.3.3 DRILLING_DOF

Drilling degree of freedom flag (default: <true>). Drilling freedoms are defined as rotations
normal to the surface of the plate. Setting this flag set to <false> forces all drilling
freedoms in the model to be suppressed. Setting it to true forces all drilling freedoms to be
active — unless they are automatically suppressed by use of the AUTO_DOF_SUP argument.
Note that while many plate elements do not have any rotational stiffness associated with
their own surface-normal directions (at nodes), when plate elements are assembled as facets
approximating an arbitrary plate surface, there is usually some misalignment between the
element normal and the actual plate normal. This is especially true of “flat” (e.g., 4-node)
elements. Hence, some rotational stiffness about the plate normal is usually present in
the model. (A clear exception to this is a flat plate, where element and plate normals are
identical.) For a curved plate, the misalignment diminishes only as the number of elements
is increased. Most plate elements in the Testbed have their own misalignment tolerance
parameter, which determines when the AUTO_DOF_SUP argument will automatically suppress
the drilling freedom. Note that for elements which kave drilling stiffness, the DRILLING_DOF
argument should be set to <true> regardless of how AUT0_DOF_SUP is set.

2.4.3.4 E

Young’s modulus (default: 30.E6). This argument is ignored if SECTION_PRC parameter is
specified. See the description for SECTION_PRC for more detail.

2.4.3.5 EDGE_WEIGHTS

Node placement can be weighted along each surface edge according to the EDGE_WEIGHTS
parameter. The input format requires a list of four edge-node placement weightings rep-
resenting the node weighting for edgel, edge2, edge3, and edge4 (default: 1.,1.,1.,1.).

The weighting value for a given edge represents the length of the last element divided by
the length of the first element along that edge. The edge orientation arrows in figure 2.4-1
point from the first element to the last element along each edge. In the case of 9-node
quad elements, the midside and center nodes are positioned at the appropriate locations
based on the elements natural coordinate system.

The procedure interprets negative weight values to mean the positive reciprocal. For
example, a value of -5.0 is identical to a value of 0.2.

2.4.3.6 ES_NAME

Element name (default: EX97). This argument is the name of the specific plate-element
type you wish to select, within the element processor defined by argument ES_PROC. The de-
fault plate-element type, EX97, is a 9-node quadrilateral element implemented in processor
ES1, and described reference 2.4-1.

2.4.3.7 ES_PARS

Element research parameters (default: 0., ...). This argument is an optional list of
element-dependent parameters that some elements provide, primarily when the element is
still undergoing research and refinement.
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2.4.3.8 ES_PROC

Element processor (default: ES1) This argument is the name of the structural element
(ES) processor that contains the plate element type you wish to employ in the model.
The default plate-element, processor ES1, is described in The Computational Structural
Mechanics Testbed User’s Manual.

2.4.3.9 NODES_1

Number of nodes on edge 1 including the nodes at the surface corners (default: 7). This
argument is also the number of nodes on edge 3. This number should be consistent with
the element type selected. For example, NODES_1 can be any number greater than 1 for
4-node quadrilateral elements, whereas it must be an odd number greater than 1 for 9-node
quadrilateral elements.

2.4.3.10 NODES.2

Number of nodes on edge 2 including the nodes at the surface corners (default: 7). This
argument is also the number of nodes on edge 4. This number should be consistent with
the element type selected. For example, NODES_2 can be any number greater than 1 for
4-node quadrilateral elements, whereas it must be an odd number greater than 1 for 9-node
quadrilateral elements.

2.4.3.11 NSECT

Plate section property number (default: 1). The NSECT value is required when defining the
element using the processor ELD. See the description of SECTION_PRC for more detail.
2.4.3.12 XU

Poisson’s ratio (default: 0.3). This argument is ignored if the SECTION_PRC input parameter
is specified. See the description of SECTION_PRC for more detail.

2.4.3.13 XyZ1

The cartesian coordinates (z,y, z) which define corner number 1 of the model surface. The
form of the input is three real values, each separated by a comma (default: 1.,0.,0.). The
surface is defined by four edges which are defined as a linear interpolation in cartesian
coordinates of four endpoints, or “corner” points.

2.4.3.14 XYZ2

The cartesian coordinates (z,y,z) defining the corner number 2 of the model surface (de-
fault: 1.,0.,1.). ‘

2.4.3.15 XYZ3

The cartesian coordinates (z,y,z) defining the corner number 3 of the model surface (de-
fault: 1.,90.,1.).
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2.4.3.16 XYZ4

The cartesian coordinates (z,y, z) defining the corner number 4 of the model surface (de-
fault: 1.,90.,0.).

2.4.3.17 SECTION_PRC
Name of a user supplied procedure to define the plate section properties (default =’ ). If
a section properties procedure is provided, the following call will be performed.

»call [section_prc] ( msect = [nsect] )

The effect of the default is to allow the procedure to generate an isotropic material section
based on the input parameters E, NU, WTDEN, and THICKNESS. The section number is defined
by the input parameter NSECT. If the call parameter SECTION_PRC is defined by the user,
then call parameters E, NU, WIDEN, and THICKNESS are ignored by procedure GEN_PLATE.

2.4.3.18 THICKNESS

Thickness of the plate wall (default = 1.0). This argument is ignored if SECTION_PRC
parameter is specified. See the description for SECTION_PRC for more detail.

2.4.3.19 WTDEN

Weight density expressed in 1b/in.? (default: 0.1 Ib/in.?). This argument is ignored if the
SECTION_PRC input parameter is specified. Processor LAU will convert the weight density
to mass density using the gravitational acceleration constant 386.4 in/ sec?.

2.4.4 USAGE GUIDELINES AND EXAMPLES

Procedure GEN_PLATE may be invoked using the *call directive. Procedure arguments may
be changed from their default values by including any or all.of the arguments and their
new values in the procedure call. A space or blank is required between the end of the
procedure name and the left parenthesis. If the default values of the procedure arguments
are to be used, then only the procedure name is required.

*procedure GEN_PLATE ( ES_PROC = ES1 ; ES_NAME = EX97 ; ES_PARS = 0.0 ; --
XYZ1 = 0.,0.,0. ; --
XYz2 =1.,0.,0. ; --
XYz3 =1.,1.,0. ; --
XYZ4 = 0.,1.,0. ; --
NODES_1 =3 ; =--
NODES_2 =3; -~
EDGE_WEIGHTS = 1.,1.,1.,1. ; --
BC_PROCEDURE = * ’ ; -- . Boundary condition procedure

DRILLING_DOF = <true> ; --

AUTO_DOF_SUP = <true> ; --

SECTION_PRC = * * ; -- . Plate section property procedure
NSECT = 1 ; -- . Plate section property ID

The following values not used if SECTION_PRC specified
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E = 30.E6 ; -- . Young’s Modulus
NU = .3 ; -- . Poissons ratio
THICKNESS = .1 -- . Plate thickness

)

2.4.4.1 Mesh Generation

The method of surface generation used by procedure GEN_PLATE is described in the section.
Terminology depicted on figure 2.4-1 provides a visual interpretation of the parameters used
to generate a general plate surface. Node generation capability is provided by the Testbed
processor MESH.

To define the plate surface, the user defines four coordinate positions in the cartesian ref-
erence frame. These coordinate positions represent the corners of a straight-sided quadri-
lateral region. The surface of the region is defined as the bi-linear interpolation of the four
sides (see refs. 2.4-2 and 2.4-3).

corner 3

edge 3

edge 2

edge 4

edge 1
/ 2

corner 1

Figure 2.4-1 Generic Plate Surface Topology.
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The connectivity of the surface is defined in figure 2.4-1. The user provides the coordinates
for corners 1 to 4. Edge 1 of the region starts at corner 1 and ends at corner 2. The
remaining edges are defined in a similar manner. The arrows indicate the orientation of
the edges and the direction of increasing node numbers.

The topology of the resulting finite clemeni grid is depicted in Figure 2.4-2. Nodes are
created first along edge 1, then in successive lines terminating along edge 3. The user
defines the number of nodes along edges 1 and 2, which also defines the number of nodes
for edges 3 and 4. The relative position of the nodes along each edge may be controlled

using the edge weighting parameter EDGE_WEIGHTS.

corner 3
25
24
s 23
corner 22
21
20
19
18
17
18 element 4
element 3 1S
14
13
12
11 element 2
element 1 10
9
8
7
8
s
4
3 corner 2

P

corner 1

Figure 2.4-2 Node and Element Topology.
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2.4.4.2 Flat Plates

In this section are presented examples of how procedure GEN_PLATE may be used to create
two-dimensional finite element plate models.

In the following example, procedure GEN_PLATE is used to generate a flat rectangular plate
with length of 10 inches and width of 5 inches using 4-noded quadrilateral elements (see

figure 2.4-3).

scall GEN_PLATE ( es_proc = ’ES1’

-

H]

es_name = ’EX47’ ;

xyzl = 0,,0.,0. ; --

xyz2 = 10.,0.,0. ; --

xyz3 = 10.,5.,0. ; --

xyz4 = 0.,56.,0. ;

nodes_1 =9 ; --

nodes_2 =5 )

32 41 42 43 44 45
o 26 2? 28 29 30 3 32

gR_ q 1
17 18 19 20 21 22 23 24

"3 1 2. 3. 4 ?
9 10 1 12 13 14 15 16

‘L 1 2 3 4 [ A 2 8
1 2 3 4 s 6 ? L__i_—L

[ a——
|

1

=

Figure 2.4-3 Rectangular Plate
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This example demonstrates the use of the EDGE_WEIGHTS parameter and how it affects both
the 4-node and 9-node quadrilateral element mapping (see figure 2.4-4). The EDGE_WEIGHTS
specifies elements at the ends of edges 1 through 4 to be 5 times longer than elements at
the beginning of the edges.

xcall GEN_PLATE ( es_proc = ’ES1’ ; es_name = 'EX97’ ; --

xyzl = 0.,0.,0. ; --

xyz2 = 10.,0.,0. ; =--

xyz3 = 10.,5.,0. ; --

xyz4 = 0.,5.,0. ; --

nodes_1 =9 ; --

nodes_2 =5 ; --

edge_weights = 5.,-6.,-5.,5. )

(a) 4-node elements

(b) 9-node elements

Figure 2.4-4 Rectangular Plate With Weighted Elements
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The following example produced the skewed flat plate shown in figure 2.4-5.
scall GEN_PLATE ( es_proc = ’ES1’ ; es_name = 'EX47’ ; --

xyzi = 0.,0.,0. ; --
xyz2 = 10.,1.,0. ; -~
xyz3 =7.,6.,0. ; --
xyz4 =2.,8.,0. ; --
nodes_1 = 13 ; --
nodes_2 =11 )

-C

Figure 2.4-5 Skewed Flat Plate
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2.4.4.3 Warped Plates

In the following example, procedure GEN_PLATE is used to generate the highly warped
surface shown in figure 2.4-6.

*call GEN_PLATE ( es_proc =

xyzl
xyz2
xyz3
xyz4
nodes_1
nodes_2

YES1
.»0.,0.
+»5.,0.
«»0.,5.

5.,6

ws we we we w

1 -

LI O |
NMDNNOONn OO
-

W .
/-

;,

Figure 2.4-6 Warped Plate

' , es_name = ’EX47? ;
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2.4.5

None.

2.4.6

None.

2.4.7

LIMITATIONS

ERROR MESSAGES AND WARNINGS

PROCEDURE FLOWCHART

GEN_PLATE (Plate generation procedure)
[BC_PROCEDURE] (user supplied boundary conditions/loads procedure)

[SECTION_PRC] (user supplied section property generation procedure)

2.4.8 PROCEDURE LISTING
sprocedure GEN_PLATE ( es_proc = esl ; es_name = ex97 ; es_pars = 0.0 ; --
xyz1 = 0.,0.,0. ; --
xyz2 =1,,0.,0. ; ~--
xyz3 =1.,1.,0. ; ~--
xyz4 = 0.,1.,0. ; --
nodes_1 =3 ; --
nodes_2 =3 ; --
edge_weights = 1.,1.,1.,1. ; --
online 0 ; -- . suppress nodes and element output
be_procedure = ’> ’ ; -- . Boundary condition procedure
drilling_dof = <true> ; --
auto_dof_sup = <true> ; --
section_prc = * ’ ; -- . Shell section property procedure
The following values used only if section_prc not specified
nsect = 1 ; -- . Shell section property ID
E = 30.E6 ; ~-- . Young’s Modulus
NO = .3 ; -- . Poisons ratio
WIDEN = .1 ; -~ . Weight Density
thickness = .1 -- . Shell thickness
)

A general purpose clip procedure
mesh for a plate with arbitraty
9 noded quadrilateral elements.

If a procedure to generate shell
the isotropic section described

to create the finite element
straight sides using 4 or

section properties is not provided,
by E, NU, WTDEN, and THICKNESS will

24-
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be automatically generated. (see [section_prc] parameter)

A boundary condition procedure should be provided but is
optional. If not provided, no boundary conditions will be
defined. (see [bc_procedure] parameier)

STemArk SERSKARARREABERRAEEASRERSARARERRR SRS

sremark GEN_PLATE MODEL GENERATION PROCEDURE
SYQmArk *SSESEEERRREER SRS ERESARRARRUBRRRAEES

*def/i n1 = [nodes_1]

sdef/i n2 = [nodes_2]

sdet/e xyzi[1:3] = [xyz1]

sdef/e xyz2[1:3] [xyz2]

*def/e xyz3[1:3] = [xyz3]

sdef/e xyz4(1:3] = [xyz4]

»det/e w[1:4] = [edge_weights]

sdef/e rc[1:4] = <xyz1[1]>,<xyz2[1]>,<xyz3[11>,<xyz4[1]>
»def/e tcl[1:4] = <xyz1[2]>,<xyz2[2]1>,<xyz3[2]>,<xyz4[2]>
sdef/e zc[1:4] = <xyz1[31>,<xyz2[3]1>,<xyz3[31>,<xyz4[3]>

#call ES ( function = ’*DEFINE ELEMENTS’ ; es_proc
es_name = [es_name] ; es_pars =

[es_procl; --
es_pars] )

[ g ]

Define nodal coordinates and element connectivities into
separate formatted files. These files are gauranteed to have
unique names that are not currently in use in the current
directory.

sdef/1 chk_closure = 0

[xqt mesh

*«if <mesh_err> /then
sremark Error occurred during MESH processor execution.
sremark GEN_PLATE procedure terminated.
seof

»endit

Construct Model Data-base with TESTBED Processors

[XQT TAB

START <tot_nodes>
ONLINE = [online]

JLOC

#ghow macros node_file
*add <node_file>
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At ittt ittt R
Define Load/Boundary Conditions If Procedure Supplied

*if <not(<ifelse([bc_procedurel; ;1;0)>)> /then
#call [BC_PROCEDURE] ( nodes_i = <ni1> ; --
nodes_2 = <n2> ; --
es_nodes = <es_nen> ; --
drilling_dof = [drilling_dof] )
*glse
e T
sremark BOUNDARY CONDITIONS NOT SPECIFIED
P LT T T

sandif

*=i? <not(<ifelse([section_prcl; ;1;0)>)> /then
scall [section_prc] ( nsect = [nsect] )
selse

sdef/e G = < [E]1/(2.+(1+[NU])) >
[xQT AUS
Build Table of Material Data

TABLE(ni=16,nj=1): OMB DATA 1 1
i=1,2,3,4,5,8,7,8,9

j=1
E11 NU12 E22 G12 G13 G23 ALPHA1 ALPHA2 WTDEN
[E] [NU] [E] <G> <G> <G> 0. 0. [WTDEN]

Build Laminate Data Tables

TABLE(ni=3,nj=1,itype=0): LAM OMB [nsect] 1

i= 1,2,3
j= 1 .  matl # layer thickness matl angle
1 [thickness] 0.
[XQT LAD
ONLINE = 2
*endif
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[xQT ELD
<ES_EXPE_CMD>
NSECT = [nsect]

Define element nodal connectivity

#show macros elem_file
sadd <elem_file>

ss==oS==TsS=S=SSSSSSSSSITSSESSSISISSSST

P T T YT T Y T T 11
sS=== == SEsS=sSS=ssSS==s===

«if < [AUTO_DOF_SUP] > /then
#call ES ( function = ’DEFINE FREEDOMS’ )
=endif
*end

2.4.9 REFERENCES

2.4-1 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User’s
Manual. NASA TM-100644, October 1989.

2.4-2 Cook, William A.: “Body Oriented (Natural) Coordinates For Generating Three-
Dimensional Meshes.” International Journal For Numerical Methods in Engineer-
ing, 1974, Volume 8, pp. 27-43.

2.4-3 Forrest, A. R.: On Coons and Other Methods for the Representation of Curved
Surfaces. Computer Graphics and Image Processing, 1972, Volume 1, pp. 341-359.
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2.5 Procedure GEN_SHELL

2.5.1 GENERAL DESCRIPTION

Procedure GEN_SHELL is used to generate a class of curved shell finite element models. All
surfaces are modeled as bi-linearly interpolated surfaces (i.e., Coon’s surfaces) in cylindrical
coordinate space (see refs. 2.5-2 and 2.5-3). Interpolation in cylindrical coordinates is
especially well suited for generating shells of revolution, such as cylinders, cones, annular
plates, and spiraling surfaces.

2.5.2 PROCEDURE USAGE

Procedure GEN_SHELL may be used by preceding the procedure name by the *call directive,
and following it by a list of arguments enclosed in parentheses. Procedure arguments are
order-independent, and most have default values thus making them optional. The formal
syntax is as follows:

*xcall GEN_SHELL ( argl = vall ; arg2 = val2 ; ...)

where argl and arg?2 represent argument names, and vall and val2 represent their cor-
responding values. Note that semi-colons are required between arguments, and a double
dash (--) preceeded by a space may be used to continue the argument list on the next
line.

The allowable arguments for procedure GEN_SHELL are summarized in the following table,
along with their default values (if they exist). Exceptions to this rule are noted in the
following section under detailed argument descriptions.
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Argument Default Value Meaning

ES_PROC ES1 Generic element processor
ES_NAME EX97 Generic element;name

ES_PARS 0.0 Element research parameters

RTZ1 1,0,0 Cylindrical coordinates of point 1.
RTZ2 1,0,1 Cylindrical coordinates of point 2.
RTZ3 1,90,1 Cylindrical coordinates of point 3.
RTZ4 1,90,0 Cylindrical coordinates of point 4.
NODES_1 7 Number of nodes along edge 1
NODES_2 7 Number of nodes along edge 2

including duplicate nodes if shell closes
EDGE_WEIGHTS 1,1,1,1 Shell section property procedure
y )
I ]

JREF Joint dof reference frame

BC_PROCEDURE Boundary condition procedure

DRILLING_DOF <false> Drilling dof suppression flag
AUTO_DOF_SUP <false> Automatic dof suppression flag
SECTION_PRC ' Shell section property procedure
NSECT | 1 Shell section property number
The following values not used if SECTION_PRC is specified.

E 30.E6 Young’s Modulus

NU 0.3 Poisson’s ratio

WIDEN 0.1 Weight Density

THICKNESS 1 Shell thickness

2.5.3 ARGUMENT DESCRIPTIONS

2.5.3.1 AUTO_DQF_SUP

Automatic degree of freedom suppression flag (default: <false>). This option provides a
convenient way of suppressing any freedoms that do not have any (or adequate) stiffness
associated with them — for example, at nodes used to prescribe geometry only; or drilling
freedoms in fine meshes composed of elements without normal rotational stiffness (see
argument DRILLING_DOF).

2.5.3.2 BC_PROCEDURE

Name of user provided boundary condition procedure (default: * ’). The term “boundary
conditions” refers both to displacement constraints and applied loading. If a boundary
condition procedure is provided, the following call will be performed. The macrosymbol
<es.nen> equals the number of element nodes, while the macrosymbols <n1> and <n2>
equal the number of nodes actually generated along edges one and two.

*call [BC_PROCEDURE] ( nodes_1i = <nl1> ; --
nodes_2 <n2> ; --
es_nodes = <es_nen> ; --

n
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Drilling degree of freedom flag (default: <false>). Drilling freedoms are defined as rota-
tions normal to the surface of the shell. Leaving this flag set to <false> forces all drilling
freedoms in the model to be suppressed. Turning it on forces all drilling freedoms to be
active — unless they are automatically suppressed by use of the AUTO_DOF_SUP argument.
Note that while many shell elements do not have any rotational stiffness associated with
their own surface-normal directions (at nodes), when shell elements are assembled as facets
approximating an arbitrary shell surface, there is usually some misalignment between the
element normal and the actual shell normal. This is especially true of “fat” (e.g., 4-node)
elements. Hence, some rotational stiffness about the shell normal is usually present in
the model. (A clear exception to this is a flat plate, where element and shell normals
are identical.) For a cylindrical shell, the misalignment diminishes only as the number of
elements is increased. Most shell elements in the Testbed have their own misalignment
tolerance parameter, which determines when the AUTO_DOF_SUP argument will automati-
cally suppress the drilling freedom. Note that for elements which have drilling stiffness,
the DRILLING_DOF argument should be set to <true> regardless of how AUTO_DOF_SUP is
set.

2.5.3.4 E

Young’s modulus (default: 30.E6). This argument is ignored if SECTION_PRC parameter is
specified. See the description for SECTION_PRC for more detail.

2.5.3.5 EDGE_WEIGHTS

Node placement can be weighted along each surface edge according to the EDGE_WEIGHTS .
parameter. The input format requires a list of four edge-node placement weightings rep-
resenting the node weighting for edgel, edge2, edge3, and edge4 (default: 1,,1.,1,,1.).

The weighting value for a given edge represents the length of the last element divided by
the length of the first element along that edge. The edge orientation arrows in figure 2.5-1
point from the first element to the last element along each edge. In the case of 9-node
quad elements, the midside and center nodes are positioned at the appropriate locations
based on the elements natural coordinate system.

The procedure interprets negative weight values to mean the positive reciprocal. For
example, a value of -5.0 is identical to a value of 0.2.

2.5.3.6 ES_NAME

Element name (default: EX97). This argument is the name of the specific shell-element type
you wish to select, within the element processor defined by argument ES_PROC. The default
shell-element type, EX97, is a 9-node quadrilateral element implemented in processor ES1,
and described reference 2.5-1.
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2.5.3.7 ES_PARS

Flement research parameters (default: 0., ...). This argument is an optional list of
element-dependent parameters that some elements provide, primarily when the element is
still undergoing research and refinement.

2.5.3.8 ES_PROC

Element processor (default: ES1) This argument is the name of the structural element
(ES) processor that contains the shell element type you wish to employ in the model.

The default shell-element, processor ES1, 1s described in The Computational Structural
Mechanics Testbed User’s Manual.

2.5.3.9 JREF

Joint degree of freedom (dof) reference frame (default: -1 for global cylindrical). The user
may provide any alternate frame which has been created prior to calling this procedure.
A negative value causes the frame to be interpreted as a cylindrical reference frame.

2.5.3.10 NODES.1

Number of nodes on edge 1 including the nodes at the surface corners (default: 7). This
argument is also the number of nodes on edge 3. This number should be consistent with
the element type selected. For example, NODES_1 can be any number greater than 1 for
4-node quadrilateral elements, whereas it must be an odd number greater than 1 for 9-node
quadrilateral elements.

2.5.3.11 NODES_2

Number of nodes on edge 2 including the nodes at the surface corners (default: 7). This
argument is also the number of nodes on edge 4. This number should be consistent with
the element type selected. For example, NODES_2 can be any number greater than 1 for
4-node quadrilateral elements, whereas it must be an odd number greater than 1 for 9-node
quadrilateral elements.

2.5.3.12 NSECT

Shell section property number (default: 1). The NSECT value is required when defining the
element using the processor ELD. See the description of SECTION_PRC for more detail.
2.5.3.13 NU

Poisson’s ratio (default: 0.3). This argument is ignored if the SECTION_PRC input parameter
is specified. See the description of SECTION.PRC for more detail.

2.5.3.14 RTZ1

The cylindrical coordinates (r,6, z) which define corner number 1 of the model surface (8
in degrees). The form of the input is three real values, each separated by a comma (default:
1.,0.,0.). The surface is defined by four edges which are defined as a linear interpolation
in cylindrical coordinates of four eundpoints, or “corner” points.
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2.5.3.15 RTZ2

The cylindrical coordinates (7,6, z) defining the corner number 2 of the model surface
(default: 1.,0.,1.).

2.5.3.16 RTZ3

The cylindrical coordinates (7,8, z) defining the corner number 3 of the model surface
(default: 1.,90.,1.).

2.5.3.17 RTZ4

The cylindrical coordinates (r,8,2) defining the corner number 4 of the model surface
(default: 1.,90.,0.).

2.5.3.18 SECTION_PRC

Name of a user supplied procedure to define the plate section properties (default = *’). If
a section properties procedure is provided, the following call will be performed.

*call [section_prc]l ( nsect = [msect] )

The effect of the default is to allow the procedure to generate an isotropic material section
based on the input parameters E, NU, WTDEN, and THICKNESS. The section number is defined
by the input parameter NSECT. If the call parameter SECTION_PRC is defined by the user,
then call parameters E, NU, WIDEN, and THICKNESS are ignored by procedure GEN_SHELL.

2.5.3.19 THICKNESS

Thickness of the shell wall (default = 1.0). This argument is ignored if SECTION_PRC
parameter is specified. See the description for SECTION_PRC for more detail.

2.5.3.20 WTDEN

Weight density expressed in 1b/in.? (default: 0.1 1b/in.3). This argument is ignored if the
SECTION_PRC input parameter is specified. Processor LAU will convert the weight density
to mass density using the gravitational acceleration constant 386.4 in/sec?.

2.5.4 USAGE GUIDELINES AND EXAMPLES

Procedure GEN_SHELL may be invoked using the *call directive. Procedure arguments may
be changed from their default values by including any or all of the arguments and their
new values in the procedure call. A space or blank is required between the end of the
procedure name and the left parenthesis. If the default values of the procedure arguments
are to be used, then only the procedure name is required.

*procedure GEN_SHELL ( ES_PROC = ES1 ; ES_NAME = EX97 ; ES_PARS = 0.0 ; --
RTZ1 =1.,0.,0. ; --
RTZ2 =1.,0.,1. ; --
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RTZ3 =1.,90.,1. ; --
RTZ4 =1.,90.,0. ; --
NODES_1 =7 ; --
NODES_2 =7 ; --
EDGE_WEIGHTS =1.,1.,1.,1. ; --
BC_PROCEDURE = ’ ’ ; -- . Boundary condition procedure
DRILLING_DOF = <true> ; --
AUTO_DOF_SUP = <true> ; --
SECTION_PRC = * ’ ; -- . Shell section property procedure
NSECT =1 ; -~ . Shell section property ID
- . The following values not used if SECTION_PRC specified
E = 30.E6 ; -- . Young’s Modulus
NU = .3 ; -- . Poissons ratio
THICKNESS = .1 -~ . Shell thickness

)

2.5.4.1 Mesh Generation

The method of surface generation used by procedure GEN_SHELL is described in the section.
Termology depicted on figure 2.5-1 provides a visual interpretation of the parameters used
to generate a curved surface.

To the define the shell surface, the user definess four coordinate positions in a cylindrical
reference frame. These four positions represent four corners of a four sided region. The
sides of the region (which will also be referred to as edges) are defined by linearly inter-
polating between the coordinate values of the corner points. The surface of the region is
defined as a bi-linear interpolation of the four sides, also known as a Coon’s surface (see
refs. 2.5-2 and 2.5-3). It must be remembered that since interpolations are performed in
cylindrical coordinates, the surface and its edges will not generally be flat or straight, but
rather curved.

2.5-6 CSM Testbed Procedures Manual Revised 12/18/91




Pre-Processing Procedures General Shells and Curved Surfaces
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Figure 2.5-1 Generic Shell Surface Topology.

The connectivity of the surface is defined in figure 2.5-1. The user provides the coordinates
for corners 1 to 4. Edge 1 of the region starts at corner 1 and ends at corner 2. The
remaining edges are defined in a similar manner. The arrows indicate the orientation of
the edges and the direction of increasing node numbers.

The topology of the resulting finite element grid is depicted in Figure 2.5-2. Nodes are
created first along edge 1, then in successive lines terminating along edge 3. The user
defines the number of nodes along edges 1 and 2, which also defines the number of nodes
for edges 3 and 4. The relative position of the nodes along each edge may be controlled
using the edge weighting parameter EDGE_WEIGHTS.
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Figure 2.5-2 Node and Element Topology.

Recognizing that the surfaces generated by procedure GEN_SHELL are four sided surfaces
in cylindrical coordinates, it will be shown, by example, how to generate segments of
cylinders, cones, annular plates, spirals, and more general surfaces. For applications which
require a complete axisymmetric surface, such as a 360 degree cylinder, the procedure has
the capability of joining the resulting finite element mesh where two sides of the region are
coincident. Closure occurs automatically but is checked only along edges 1 and 3. Closure
will not occur between edges 2 and 4. Note also that the user must request the number of
nodes along edge 2 as though the surface were not closed. This requirement is to say that
the user should not presume closure will occur.

25-8 CSM Testbed Procedures Manual Revised 5/24/90




Pre-Processing Procedures General Shells and Curved Surfaces

L e |

o r 4 H stanl C 1 nd 2
L.0.2:. 4 oyiiniuracal ol 1 JTLLVIVILD

In this section there are presented examples of how procedure GEN_SHELL may be used to
create various shell segments on a right circular cylindrical surface.

In the following example, procedure GEN_SHELL is used to generate a cylindrical segment
with radius of 5 inches and length of 10 inches. Only 90 degrees of the cylinder is generated
(see figure 2.5-3).

*call GEN_SHELL ( es_proc = ’ES1’ ; es_name = ’EX47’ ; -~
rtzl = 5.,0.,0. ; --

rtz2 = 5.,0.,10. ; --
rtz3 = 5.,90.,10. ; --
rtz4 = 5,,90.,0. ; --
nodes_1 =5 ; --

nodes_2 =7)

S ,_,__-—/——-9’//‘

- S

(a) 4-node elements (b) 9-node elements

Figure 2.5-3 90 Degree Cylindrical Segment
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This example creates a complete 360 degree cylindrical shell using 9-node quadrilateral
elements (see figure 2.5-4). Note that midside nodes are not shown. The input specifies
elements at the end of edges 1 and 3 to be 5 times longer that elements at the beginning
of the same edges. Closure of the cylinder is obtained by defining corner points 1 and 4,
and corner points 2 and 3, to be coincident in the » and z directions, with a difference in

6 of 360 degrees.
*call GEN_SHELL ( es_proc = ’ES1’ ; es_name = ’EX97’ ; --

rtzl =5.,0.,0, ; -~
rtz2 = 5.,0.,10. ; --
rtz3 = 5,,360.,10. ; --
rtz4 = 5.,360.,0. ; --
nodes_1 =11 ; --

nodes_2 =25 ; --
edge_weights = 65.,1.,5.,1. )
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Figure 2.5-4 Right Circular Cylinder - 9-node Elements
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By simply increasing the z coordinaie values for corner points 3 and 4, the cylinder wall
can be made to spiral about the z axis. The following example illustrates this technique.
The resulting spiral is shown in figure 2.5-5. This configuration may be used to model a
spring.

*call GEN_SHELL ( es_proc = ’ES1’ ; es_name = ’EX47’ ; --

rtzi = 5.,0.,0. ; --
rtz2 = 5.,0.,2. ; --
rtz3 = 5.,720.,12. ; --
rtz4 = 5.,720.,10. ; --
nodes_1 =5 ; --

nodes_2 = 37 )

Figure 2.5.5 Spiraling Cylinder Wall
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The following example produced the cylinder of skewed elements shown in figure 2.5-6.
*call GEN_SHELL ( es_proc = 'ES1’ ; es_name = ’EX47’ ; --

rtzl
rtz2
rtz3
rtz4
nodes_1
nodes_2

Figure 2.5-6 Cylinder With Skewed Elements

+,0.,0. ; --
.,90.,10. ; --
.,450.,10. ; --
.,360.,0. ; --
=T ; --

= 25 )
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Z2.5.4.3 Conical Shell Seciions

In this section, examples of how procedure GEN_SHELL may be used to create shell segments
on a conical surface are presented.

This example creates a complete 360 degree conical shell using 9-node quadrilateral ele-
ments (see figure 2.5-7). Elements are defined at the top of the cones to be 1/5 as long
axially as those at the base. Closure of the cone is obtained by defining corner points 1
and 4, and corner points 2 and 3, to be coincident in r and z directions, with a difference

in 8 of 360 degrees.
*call GEN_SHELL ( es_proc = ’'ES1’ ; es_name = ’EX97’ ; --

rtzl = 5,,0.,0. ; --
rtz2 =1.,0.,10. ; --
rtz3 = 1,,360.,10, ; =--
rtz4 = 5.,360.,0, ; --
nodes_1 =9 ; --

nodes_2 = 26 ; --
edge_weights = -4.,1.,-4.,1. )

Figure 2.5-7 Conical Shell - 9-Node Elements
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In the following example, procedure GEN_SHELL is used to generate an unusual shell which
lies on the conical surface of the previous example. The shell spans 360 degrees at the top
but only spans 180 degrees at the base (see figure 2.5-8).

»call GEN_SHELL ( es_proc = 'ES1’ ; es_name = ’EX47’ ; --

rtzl = 5,,90.,0. ; --
rtz2 =1.,0.,10. ; --
rtz3 = 1.,360.,10. ; --
rtz4 = §.,270.,0. ; --
nodes_1 =11 ; --

nodes_2 = 21 ; --

edge_weights = -3.,1.,-3.,1. )

Figure 2.5-8 Unusual Conical Shell
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2.5.4.4 Annular Plates

In this section examples of how procedure GEN_SHELL may be used to create annular shell
segments are presented.

This example creates a 90 degree annular shell segment using 9-node quadrilateral elements
(see figure 2.5-9). Note that the midside nodes are not shown. The plate has an inner radius
of 1 inch and the outer radius of 5 inches. Element size weighting is also demonstrated.

*call GEN_SHELL ( es_proc = 'ES1’ ; es_name = ’EX97’ ; --

rtzl = 1,,0.,0, ; -~
rtz2 = 5.,0.,0. ; --
rtz3 = 5,,90.,0. ; -~
rtz4 =1,,90.,0. ; --
nodes_1 = 11 ; ~--
nodes_2 = 11 ; --
edge_weights = 6.,1.,6.,1. )

=
»

Figure 2.5-9 Flat Annular Shell
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By simply increasing the z coordinate values for corner points 3 and 4, the annular surface
can be made to spiral about the z axis. The following example illustrates this technique.
The resulting spiral is shown in figure 2.5-10.

*call GEN_SHELL ( es_proc = ’ES1’ ; es_name = ’'EX47’ ; --

rtzi = 3,,0.,0. ; --
rtz2 = §5,,0.,0. ; --
rtz3 =5.,720.,10. ; -~
rtz4 = 3,,720.,10. ; --
nodes_1 = 5 ; ==

nodes_2 = 33 )

Figure 2.5-10 Spiraling Shell
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2.5.4.5 Exotic Shell Sections

In this section examples of how procedure GEN_SHELL may be used to create unusual shell
segments are presented.

This example creates a spiraling surface which changes from a flat to a vertical shell while
increasing in z direction and decreasing in radius (see figure 2.5-11).

*call GEN_SHELL ( es_proc = ’ES1’ ; es_name = ’EX97’ ; --

rtzl = 3.,0.,0. ; ~--
rtz2 = 5,,0.,0. ; -~
rtz3 = 1,,720.,12. ; --
rtz4 =1,,720.,10, ; --
nodes_1 =5 ; --

nodes_2 = 45 )

Figure 2.5-11 Exotic Spiral Shell
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In the following example, procedure GEN_SHELL is used to generate a vertical coiled shell
(see figure 2.5-12).

»call GEN_SHELL ( es_proc = 'ES1’ ; es_name = 'EX47’ ; --

rtzl = 0.,0.,0. ; --
rtz2 0.,0.,1. ; --
rtz3 = 3.,1080.,1. ; --
rtz4 = 3.,1080.,0. ; --
nodes_1 =5 ; --

nodes_2 = 85 )

Figure 2.5-12 Vertical Coiled Shell
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This example uses procedure GEN_SHELL t{o generate a flat coiled shell (see figure 2.

*call GEN_SHELL ( es_proc = ?ES1’
0.,0.,0.
i.,0.,0.
9.,720.,0.

rtzl
rtz2
rtz3
rtz4
nodes_1
nodes_2

5.5,720.,0.

5;
51 )

n_

; es_name = ’EX47’ ; --

.
’

¢ -
’

Figure 2.5-13 Flat Coiled Shell
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Finally, an arbitrary shell is created to demonstrate the generality of the procedure
GEN_SHELL (see figure 2.5-14).

*call GEN_SHELL ( es_proc = ’ES1’ ; es_name = ’EX47’ ; --

rtzl = -2.,-256.,0. ; --
rtz2 =7.,190.,-3. ; --
rtz3 = -2.,230.,7. ; --
rtz4 = 6.,0.,10. ; --
nodes_1 =26 ; --

nodes_2 = 25 )

Figure 2.5-14 Arbitrary Shell
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As previously stated, to obtain closed axisymmetric surface models, the user must define
edges 1 and 3 to be the coincident edges.

2.5.6 ERROR MESSAGES AND WARNINGS

None.

2.5.7 PROCEDURE FLOWCHART

GEN_SHELL (Shell generation procedure)
[BC_PROCEDURE] (user supplied boundary conditions/loads procedure)
[SECTION._PRC] (user supplied section property generation procedure)
CYL_NODES (surface node generation procedure)
CYL_ELT_CONN (element connectivity definition procedure)

2.5.8 PROCEDURE LISTING

sprocedure GEN_SHELL ( es_proc esl ; es_name = ex97 ; es_pars = 0. ; --

rtzi =1,,0.,0. ; --
rtz2 =1.,0.,1. ; --
rtz3 =1.,80.,1. ; ~--
rtz4 = 1.,90.,0. ; ~--
nodes_1 =7 ; --
nodes_2 =7 ; --
edge_weights =1.,1.,1.,1. ; --
jret = -1 ; -- . Joint dof reference frame
be_procedure = > > ; -- . Boundary condition procedure
online = 0 ; -- . supress nodes/elts output
drilling_dof = <true> ; --
auto_dof_sup = <true> ; --
section_prc = ? ? ; -- . Shell section property procedure
The following values used only if section_prc not specified
nsect = 1 ; -- . Shell section property ID
E = 30.E6 ; -- . Young’s Modulus
NU = .3 ; -- . Poisons ratio
WIDEN = .1 ; -~ . Weight Demnsity
thickness = .1 -- . Shell thickness
)
ittt PP PP Pt R R PR i At i A b e A 2 ]

Model Definition Procedure for GENeric Shell in cylindrical coordinates

sS=IS=sSsxz== 1 I I i ittt i ittt it e A A 2 2 2 ]

a2

A general purpose clip procedure to create the finite element
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mesh for a partial or complete cylindrical shell using 4 or
9 noded quadrilateral elements.

Note that when generating a 360 degree closed shell,
the caller should specify the number of circumferential nodes as
if the cylindrical shell were not closed, or in other words,
the line of nodes where closure occurs should be counted twice.
There will only be one set of nodes actually create where
closure occurs.

There is no verification performed to detect overlapping or
. otherwise improbable element generation. This should be done
. prior to calling this utility.

If a procedure to generate shell section properties is not provided,
the isotropic section described by E, NU, WTDEN, and THICKNESS will
be automatically generated. (see [section_prc] parameter)

A boundary condition procedure should be provided but is
optional. If not provided, no boundary conditions will be
defined. (see [bc_procedure] parameter)

Sromark SSASERERSRARRRIRRRREREERREREESERARER

sremark GEN_SHELL MODEL GENERATION PROCEDURE
STOMATK #HERIEEASARRRRASERARERRREREER SRS SRS R

#def/i n1 = [nodes_1]

sdef/i n2 = [nodes_2]

sdef/e rtz1[1:3] = [rtzi]

sdef/e rtz2[1:3] [rtz2]

sdet/e rtz3[1:3] [rtz3]

sdef/e rtz4[1:3] = [rtz4]

sdef/e w[1:4] = [edge_weights]

*def/e rc[1:4] <rtz1[1]>,<rtz2[1]1>,<rtz3[11>,<rtz4[1]>
sdet/e tc[1:4] = <rtz1[21>,<rtz2[2]>,<rtz3[2]1>,<rtz4[(2]>
edet/e zc[1:4] = <rtz1[31>,<rtz2[3]1>,<rtz3[3]1>,<rtz4[3]>

#call ES ( function = 'DEFINE ELEMENTS’ ; es_proc = [es_procl; --
es_name = [es_name] ; es_pars = [es_pars] )

Detine nodal coordinates and element connectivities into
separate formatted files. These files are gauranteed to have
unique names that are not currently in use in the current

. directory.

#def/i chk_closure = 1
[xqt mesh
*if <mesh_err> /then
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sremark Error occurred during HESH processor execution.
sremark GEN_SHELL procedure terminated.
*eof

*endif

[XQT TAB

START <tot_nodes>

ONLINE = [online]

JLOC

FORMAT = 2 . use cylindrical coordinate system
sshow macros node_file

=add <node_file>

Define DOF Directions

JREF . Use local cylindrical basis vectors
. for nodal DOFS:
. u,v,w = radial, circumfer., axial
NREF = [jref]
1 <tot_nodes> . same convention for all nodes

. Define Load/Boundary Conditions If Procedure Supplied

»if <not(<ifelse([bc_procedurel; ;1;0)>)> /then
scall [BC_PROCEDURE] ( nodes_1 = <ni> ; -~
nodes_2 = <n2> ; --
es_nodes = <es_nen> ; --
drilling dof = [drilling dof] )
selse
sremark *assssEssss P ITT T
sremark BOUNDARY CONDITIONS NOT SPECIFIED
Sromark SHSSASENRSARAERREERRESRERKARIPREN

sendif

Define Shell Section Properties

»if <not(<ifelse([section_prcl; ;1;0)>)> /then
wcall [section_prcl ( nsect = [nsect] )
*olse
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sdef/e G = < [E1/(2.+(1+[NU1)) >
[XQT AUS

Build Table of Material Data

TABLE(ni=16,nj=1): OMB DATA 1 1
i=1,2,3,4,5,6,7,8,9

j=1
E11 NU12 E22 G12 G13 G23 ALPHA1 ALPHA2 WTDEN
[E] [NU] [E] <G> <G> <G> 0. 0. [WTDEN]

Build Laminate Data Tables

TABLE(ni=3,nj=1,itype=0): LAM OMB [nsect] 1

i= 1,2,3
j= 1 . ratl # layer thickness matl angle
1 [thickness] 0.
[XQT LAU
ONLINE = 2
*endif

Generate Elements

{XQT ELD
<ES_EXPE_CMD>
NSECT = [nsect]

Define element nodal connectivity

*ghow macros elem_file
*add <elem_file>

*if < [AUTO_DOF_SUP] > /then
#call ES ( function = ’DEFINE FREEDOMS’ )
sendif

»end
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Solution Procedures

o N
Q.U

The procedures documented in this chapter are for specific analysis tasks. These procedures
provide examples of how to perform common structural analysis tasks (e.g., static solution,
eigensolution) using the command language and processors available in the CSM Testbed
Software System.

A summary of the procedures found in this chapter is provided in Table 3.0-1.

Table 3.0-1 Solution Procedures

Procedure Name

Analysis Description

L_DYNAMIC_O Linear transient dynamic analysis using modal anal-
ysis

L_DYNAMIC_1 - Linear transient dynamic analysis using Newmark al-
gorithm

L_STABIL_ 1 Linear stability (buckling eigenvalue) analysis with
prescribed prestress

L_STABIL.2 Linear stability (buckling eigenvalue) analysis with
linearly-computed prestress

L_STATIC Linear static analysis

L_VIBRAT.O Linear vibration (eigenvalue) analysis about un-
stressed state

L_VIBRAT_1 Linear vibration (eigenvalue) analysis about a pre-
scribed prestressed state

L_VIBRAT_2 Linear vibration (eigenvalue) analysis about a linearly-
computed prestressed state

NL_STATIC_1 Nonlinear static analysis; modified Newton iteration
with arc-length control

NL_STATIC.2 Advanced Riks method

NL_DYNAMIC.1

Nonlinear Dynamic Analysis

Revised 5/18/90
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3.1 Processor L. DYNAMIC_0

THIS SECTION UNDER PREPARATION
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> L.DYNAMIC._1

3.2.1 GENERAL DESCRIPTION

Procedure L DYNAMIC.1 performs a linear transient dynamic analysis using either the
Newmark-3 implicit direct time integration procedure outlined in reference 3.2-1. When
Procedure L_DYNAMIC_1 is called, a transient response calculation by direct integration
of the system equations with a fixed time step is performed. Procedure L_DYNAMIC calls
Procedure NEWMARK which implements the well-known Newmark integration method for
second order, coupled systems. Parameters such as the names of the system stiffness and
mass matrices, the time step, and the total number of time steps in the analysis are formal
arguments to Procedure L_DYNAMIC_1. In Procedure NEWMARK, extensive use is made of the
CLAMP macro expression capability for calculating integration constants and controlling
the algorithm. The initial acceleration at time t = 0 is calculated from the given initial
displacement and velocity vectors. This is done by using processor AUS to set up the
equations of motion at t=0, and processors INV and SSOL to solve for the acceleration.
At each subsequent time step, processor AUS is used to set up the récursion relations, and
processor SSOL is used to solve for the displacement vector at the next time step. Then
velocity and acceleration vectors are calculated and selectively printed.

3.2.2 THEORY

3.2.2.1 Introduction

The equations of motion for an undamped, linear elastic structure at time ¢t + At are

Mua: + Kugpae = Pipae (3.2-1)
where
M is the mass matrix
K is the linear elastic stiffness matrix
Py At is the load vector at time ¢ + At
u¢+ae is the displacement vector at time ¢ + At

Uy e is the acceleration vector at time ¢ + At

3.2.2.2 Newmark-3 Method

The Newmark-8 method is an implicit direct time integration procedure that is based on
the following assumptions:

Uepae = 0+ [(1 = )l + iy ae | A (3.2-2)
. 1 . .
Wb At = U + AtU¢ + [(5 - ,B)ut + ﬂUg+Ag ](At)2 (32 — 3)
where
Revised 5/18/90 CSM Testbed Procedures Manual 3.2-1
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Ut A¢ is the velocity vector at time ¢ + At

At is time step size

The paramcters ~ and 8 determine integration accuracy and stability. When v = — and
B = z, thelinear acceleration method i 1s obtained (1 e., the acceleration is assumed to vary
lnnearly over a time step). When vy = — and g = 4 ) Newmark’s original, constant-average-
acceleration method (also called the trapezoida.l rule) is obtained.

3.2.3 ALGORITHM

The Procedure L_DYNAMIC_1 closely follows the computational procedure presented in ref-
erence 3.2-1. Briefly, an outline of the procedure is as follows:

1. Select time step size, AAt, and parameters v and . Calculate integration constants:

1 1,1
> L. (= .
125; B2 4(2+'7) :
- . S S
= Bar M Taar M T Ay
1 Y
w=gp-t  w=F-b w=547-2)

ag = At(l —7); ar =vAt

2. Initialize displacements u,, velocities u,, and accelerations u,.

3. Form effective stiffness matrix K
K=K+ a, M

4. Decompose K X
K = LDL”

For each time step:
5. Calculate effective loads RH At
Ritar = Popar +M(aou, + azit, + asiiy)
6. Solve for displacements at time t + At
LDLTUH.At = Rt+At

7. Calculate accelerations and velocities at time t + At

Upar = o(Uepar — Ue) — aglly — a3iiy
Wepae = W+ agliy + ariieyae
3.2-2 CSM Testbed Procedures Manual Revised 5/18/90
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This procedure neglects damping and assumes that a single, constant time step size At is
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used throughout the analysis.
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2.4
Procedure L_DYNAMIC_1 is used by preceding the procedure name by the *call directive.
Procedure arguments may be changed from their default values by including any or all
of the arguments and their new values when the procedure is called. A space or blank
is required between the end of the procedure name and the left parenthesis. If the default
values of the procedure arguments are to be used, then only the procedure name is required.

*call LDYNAMIC_ 1 ( argl = vall ; arg2 = val2 ; ...)

where argl and arg?2 represent argument names, and vall and val2 represent their cor-
responding values. Note that semi-colons are required between arguments, and a double
dash (--) may be used to continue the argument list on the next line.

The allowable arguments for Procedure L_DYNAMIC_1 are summarized in the following table,
along with their default values (if they exist). Note that arguments without defaults are
generally mandatory, while those with defaults are generally optional. Exceptions to this
rule are noted in the following section under detailed argument descriptions.

For Procedure L_DYNAMIC_1, the following table lists each argument, its default value and
meaning.

Argument Default Value Meaning

DELT - Time increment, At

NSTEP - Number of time steps
BETA 0.25 Time integrator parameter
GAMMA 0.50 Time integrator parameter

3.2.5 ARGUMENT DESCRIPTION

3.2.5.1 BETA
Newmark-g3 time integrator parameter, 8 (default: 1/4).

3.2.5.2 DELT

Time step size. This argument specifies the size of the time step to be used in the analysis.
A constant step size is assumed per procedure call.

3.2.5.3 GAMMA
Newmark-83 time integrator parameter v (default: 1/6).

Revised 5/18/90 CSM Testbed Procedures Manual 3.2-3



Linear Transient Dynamic Analysis Solution Procedures

3.2.5.4 NSTEP

Number of time steps to march. This argument specifies the number of time steps to march
in the transient response prediction using a constant time step size of DELT.

3.2.6 PROCEDURE FLOWCHART
L_DYNAMIC_1 (main procedure)
NEWMARK (Newmark-g time integration)
8.2.7 LIMITATIONS

None.

3.2.8 ERROR MESSAGES AND WARNINGS

None.

3.2.9 USAGE GUIDELINES AND EXAMPLES

Procedure L DYNAMIC_1 is used by preceding the procedure name by the *call directive.
Procedure arguments may be changed from their default values by including any or all
of the arguments and their new values when the procedure is called. A space or blank
is required between the end of the procedure name and the left parenthesis.

*call L_DYNAMIC_1 ( delt = 0.02 ; --
nstep = 100 ; --
beta = 0.25 ; --
gamma = 0.50 )

3.2.10 PROCEDURE LISTING

3.2.11 REFERENCES

3.2-1 Bathe, K. J., Finite Element Procedures in Engineering Analysis, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1982, pp. 511-512.
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3.3 Procedure L_STARBIL 1

3.3.1 GENERAL DESCRIPTION

Procedure L_STABIL_1 performs linear stability analysis using an eigensolver selected by the
global macrosymbol eigensolver_name (e.g., EIG2, LAN, LANZ) and structural element
(ES:) processors based on the generic element processor template. The procedure assumes
that the finite element model, loads, and boundary conditions have already been generated,
that the prebuckling stress state has been specified, and that the buckling loads and mode
shapes need to be calculated. The prebuckling stress state (i.e., prestress state) is specified
by prescribing values for procedure L_STABIL_1 arguments. A linear stability analysis is
performed using this prescribed stress state.

3.3.2 THEORY

Linear elastic stability analyses may be formulated using the concept of adjacent equilib-
rium. Membrane forces in beams, plates, and shells result in an equilibrium configuration
in which the deformation pattern is tangent to the midsurface of the structure. However,
another equilibrium configuration involving out-of-plane deflections and rotations may be
adjacent to this membrane state. Buckling occurs when this membrane strain energy is
converted to bending strain energy. The linear elastic stability analysis is an eigenvalue
problem to calculate the critical load for the bifurcation in the solution (e.g., change from
a membrane state to a bending state). This eigenvalue problem can be written as

Ko, + MKy (o)p; =0 i=1,2,... (3.3-1)
where
K = assembled linear elastic stiffness matrix
K, (o) = assembled geometric stiffness matrix
¢; = i-th eigenvector or modeshape

Ai = i-th eigenvalue or buckling load factor

The matrix denoted by K, has been called the initial stress stiffnéss matrix, the differential
stiffness matrix, the geometric stiffness matrix, and the stability coefficient matrix (e.g.,
see ref. 3.3-1). It is independent of the elastic properties of the structure and dependent
on the geometry, displacement field, and state of stress. Herein the matrix K, will be
referred to as the geometric stiffness matrix.

A general formulation for the geometric stiffness matrix is presented in reference 3.3-1.
Strains can be written as 4
€ = €L + €ENL (3.3-2)

where €1, contains the linear strain-displacement terms and €Ny, contains the higher-order
or nonlinear strain-displacement terms. For a given stress state oy, elastic strain energy
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is stored and can be expressed as

U=Ur+Unt (3.3-3)
where -
1
= - / el oodV (3.3 — 4a)
2Jy
1
Up==< / el oydV (3.3 — 4b)
2Jv
1 T
UnL = 5 ENLO0dV (3.3 - 4c)
v

The geometric stiffness matrix is derived from the strain energy produced by stresses acting
through displacements associated with the nonlinear strain-displacement relations. These
relations couple the membrane and bending effects. Typically the strain-displacements
relations are written using index notation as

1
€j =73 [Biuj + Bjui + Biuwdjur) (3.3-5)

where u; = (u,v,w) for i = 1,2,3, respectively, J; denotes differentiation with respect to
ith coordinate direction and summation over repeated indices is implied. Let d denote the
nodal degrees of freedom, then

§ =Gd (3.3-16)
where

6 = {0, u, 8yu, 8,u, 8.v, Oyv, 8,v, O:w, Fyw, B.w}

The coeficients of G are obtained by differentiating the element shape functions. Finally
the matrix Q is defined as '
[0y O 0 8:v O 0 O.w O 0 1
0 8u 0 0 Jv O 0 Guw 0
0 0 d,u O 0 O,v O 0 Ow
Q= u Gu 0 Ov v 0 OGw O,w O (3.3-7)
0 8u 8u 0 8v v 0 Jw Juw
|8,y 0 8u v 0 O:v Bw 0 O.w

With these definitions the nonlinear strains given by equation (3.3-2) can be written as

1
ENL = EQGd (3.3 - 8)
The vector of initial stresses is

Oy = {630 Oyo 020 Tzyo Tyz0 Tzzo} (3.3 - 9)
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Substituting equations (3.3-6) through (3.3-9) into equation (3.3-4c) gives

1
UNL = EdT(/ GTQTGQ dV) (3.3 - 10)
\’4

However, the term QT o can be written as

Q7o = 6§ =5(00)6 (3.3-11)

oo n
S n ©
n OO

where

-0'2:0 Tzy0o Tzz0
8= |Tzyo Oy Tyz0 (3.3-12)

| Tzz0 Tyz0 Oz0

With these expressions, a general form of the geometric stiffness matrix can be written as
Ky(o) = / GTS(00)GdV (3.3 - 13)
v

which is symmetric and explicitly dependent on the stress state.

The stress state used to form the geometric stiffness matrix may be obtained in two ways.
The first way is first to perform a linear static stress analysis for the given load set and
constraint set. This way is used in procedure L_STABIL_2. The second way is to specify, in
advance, the values of the stress components given in equation (3.3-11) (i.e., specify the
prestress state). This way is used in procedure L_STABIL_1.

3.3.3 ALGORITHM

The algorithm used to solve equation (3.3-1) depends on the value of the global macrosym-
bol eigensolver_name. Processor EIG2is used if eigensolver_name is defined to be EIG2.
This processor uses a nodal-block sparse matrix approach as described in reference 3.3-2.
Processor LAN is used if eigensolver_name is defined to be LAN. Processor LANZ is used
if eigensolver_name is defined to be LANZ. These processors are based on the Lanczos
algorithm as described in references 3.3-2 to 3.3-4.

3.3.4 PROCEDURE USAGE

Procedure L_STABIL_1 may be invoked by the *call directive, and following it by a list of
arguments separated by semicolons(;) and enclosed in parentheses. Procedure arguments
are order-independent, and most have default values thus making them optional. The
formal syntax is as follows:

*call L STABIL_1 ( argl = vall; arg2 = val2; ...)
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where arg: are argument names and vali are the corresponding values. The following
are valid arguments for procedure L_STABIL_1; note that those arguments without default
values are mandatory, while the others are optional.

Argument Default Value Meaning

PS_1 -- Prebuckling membrane stress resultant N2

PS_2 -- Prebuckling membrane stress resultant N7

PS_3 -- Prebuckling membrane stress resultant N2,

BCON_SET 1 Constraint set for buckling analysis

ERROR_TOL .0001 Convergence criterion for eigenvalues

FUNCTION ALL Select function to be performed by procedure

INIT_VECTOR 0 Number of initial vectors used to span the subspace

ISEQ 0 Resequencing method to be used

LDI 1 Local device index

LOAD_SET 1 Load set number

KNAME K First word of the name of the dataset containing the
assembled stiffness matrix

MAX_ITERS 20 Maximum number of iterations allowed

N_GROUPS 1

N_MODES 1 Number of eigenvalues to converge

PRINT <false> Flag to print displacement solution, internal forces, and
element stresses, and eigenvectors

RENUMBER <true> Flag to resequence node numbers for equation solver

SHIFT 0.0 Eigenvalue shift

Tables 3.3-1, 3.3-2, and 3.3-3 list the datasets used or created by procedure L_.STABIL_1,
the procedures invoked by procedure L_STABIL_1, and the processors invoked by procedure
L_STABIL_1, respectively.
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Table 3.3-1 Datasets Input/Output by procedure L_STABIL_1
Dataset Description Input |Output
AMAP..ic2.isize Factorization Map for INV Vv
BUCK.EVAL.:.jt Buckling eigenvalues v
BUCK.MODE.i.;! Buckling eigenvalues v
<ES_NAME>.EFIL.0.nnod | Element Computational Data Vv Vv
ES.SUMMARY ES Processor Status V4 Vv
DEF.<ES_NAME>.0.nnod |Element Definition (Connectivity) Vv
DIR.<ES_NAME>.0.nnod |Element EFIL Directory Vv
INV.KSHF.jf Factored Shifted System Matrix
INV.<KNAME>.;I Factored System Matrix v
JDF1.BTAB.1.8 Model Summary Vv
KG.SPAR.jdf2 Assembled geometric stiffness matrix Vv
KMAP..ic2.isize Model Connectivity Map Vv
<KNAME>.SPAR.jdf2 Assembled system matrix Vv

t i = <loadset> and j = <cons_set>

Table 3.3-2 Sub-Procedures Invoked by procedure L_STABIL_1

Procedure Type Function
ES External |Element utility procedure
FACTOR External |Factors assembled stiffness matrix

L_.STABIL_1 |Internal

Main procedure

5/24/90
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Table 3.3-3 Processors Invoked by procedure L_STABIL_1

Procedure| Type Function

AUS Internal | Arithmetic Utilities

E Internal |Initializes EFIL datasets

EIG2 Internal |Solve eigenvalue problem using subspace iteration
ES: External |Element processors based on GEP

K Internal | Assemble system matrix

LAN External | Solve eigenvalue problem using Lanczos method

LANZ External |Solve eigenvalue problem using Lanczos method

RSEQ Internal |Resequences nodes for equation solving

TOPO |Internal |Generates nodal topology maps

VPRT Internal |Print SYSVEC system vectors

3.3.5 ARGUMENT DESCRIPTION

3.3.5.1 BCON_SET

Constraint set number for buckling analysis (default: 1). This argument selects which
constraint set to use in solving the linear stability problem.

3.3.5.2 ERROR_TOL

Convergence criterion for eigenvalues (default: 0.0001). For the k-th iteration, the error
measure for the i-th eigenvalue is

k—
O (v
' IS
The i-th eigenvalue is converged if € is smaller than ERROR_TOL.

3.3.5.3 FUNCTION

Select function to be performed by procedure L_.STABIL_1 (default: ALL). This procedure
may be used to perform two functions. For FUNCTION=ALL, the element data are initialized
and elemental stiffness matrices formed; nodal resequencing may be performed, the mesh
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topology is analyzed, the system stifiness matrix is assembled and factored, and the eigen-
problem is solved. For FUNCTION=EIGEN, procedure L_STABIL_1 uses a prescribed prestress
state in solving the eigenvalue problem. Using the FUNCTION argument, the user may solve
for a variety of constraint (boundary conditions) sets on a given model subjected to a
variety of loading conditions.

3.3.5.4 INIT_VECTOR

Number of initial vectors used to span the subspace (default: 0). This argument defines
the number of trial vectors used to initiate the subspace iteration. If INIT_VECTOR=0, the
number of initial vectors will be calculated by the procedure as

INIT_.VECTOR=MINIMUM (2*N_MODES, N_MODES + 8)

3.3.5.5 ISEQ

Resequencing method to be used (default: 0). If the argument RENUMBER is <true>,
then nodal resequencing will be performed using processor RSEQ. The method used by
processor RSEQ to resequence the nodes depends on the value of ISEQ. If the argument
ISEQ is greater than or equal to zero, then that method will be used (i.e., method=0,1,2,3;
see Section 6.1 of the CSM Testbed User’s Manual, ref. 3.3-2).

3.3.5.6 KNAME

First word of the dataset name containing the assembled stiffness matrix (default: K).

3.3.5.7 LDI
Logical device index (default: 1).

3.3.5.8 MAX_ITERS

Maximum number of iterations (default: 20). This argument specifies the maximum num-
ber of iterations that can be used per call to eigensolver.

3.3.5.9 N_GROUPS

3.3.5.10 N_MODES

Number of converged eigenvalues desired (default: 1). This argument specifies the number
of eigenvalues to calculate to a convergence criterion of ERROR_TOL.

3.3.5.11 PRINT

Flag to print modeshapes (default: <false>). If printing of these computed results is
requested, processor VPRT will be used to print the buckling modeshapes.
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3.3.5.12 ps_1

Prescribed membrane stress resultant N2 for the prestressed state.

3.3.5.13 Ps.2

Prescribed membrane stress resultant N7 for the prestressed state.

3.3.5.14 PS.3

Prescribed membrane stress resultant N7, for the prestressed state.

3.3.5.15 RENUMBER

Flag to resequence node numbers prior to equation solving (default: <true>). If the argu-
ment RENUMBER=<true>, then processor RSEQ will be used to perform nodal resequencing,
otherwise no resequencing will be performed. Note that the nodal resequencing may greatly
reduce the time required to factor and solve the linear system of equations.

3.3.5.16 SHIFT

Eigenvalue shift (default: 0.0). Converged eigenvalue will only be obtained for eigenvalues
greater than SHIFT. The shift parameter refers to the shift in the buckling load factor.

3.3.6 PROCEDURE FLOWCHART

L_STABIL_1 (main procedure)
INITIALIZE (initialize)
STIFFNESS (form K)
STIFFNESS (form K,)
FACTOR (factor using buckling boundary conditions)
EIGEN (perform eigenvalue analysis)

3.3.7 LIMITATIONS

None.

3.3.8 ERROR MESSAGES AND WARNINGS

None.
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Procedure L_STABIL_1 may be used by preceding the procedure name by the *call direc-
tive. Procedure arguments may be changed from their default values by including any or
all the arguments and their new values when the procedure is called. A space or blank
is required between the end of the procedure name and the left parenthesis.

*call L_STABIL_1 ( FUNCTION = ALL ; -- . Select function
BCON_SET =1 ; -- . Select buckling constraint set
ERROR_TOL = .0001 ; -- . Eigenvalue convergence criterion
INIT_VECTOR = O ; -~ . Number of initial vectors

ISEQ = -1 ; -- . Select resequencing method
KNAME = K ; -- . First word of stiffness matrix
-- ., dataset name

MAX_ITERS = 20; -- Maximum number of iterations

N_MODES = 1
N_GROUPS = 1

-~ Number of eigenvalues

PS_1 -

PS_2 -

PS_3 ; --

PRINT = <true> ; -- . PRINT flag
RENUMBER = <true> ; -- . RESEQUENCING flag
SHIFT = 0.0 ; Eigenvalue shift

Before procedure L_STABIL_1 is called, the global macrosymbol eigensolver_name should
be defined as described in Section 3.3.3; otherwise, the default value of EIG2 will be used.

3.3.10 PROCEDURE LISTING

3.3.11 REFERENCES

3.3-1 Cook, Robert D.: Concepts and Applications of Finite Element Analysis. (Second
Edition). John Wiley and Sons, Inc., New York 1981.

3.3-2 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User’s
Manual. NASA TM-100644, October 1989.

3.3-3 Bostic, S. W. and Fulton R. E.: A Lanczos Eigenvalue Method on a Parallel Com-
puter. AIAA Paper No. 87-0725-CP.

3.3-4 Jones, Mark T. and Patrick, Merrell L.: The Use of Lanczos’s Method to Solve
the Large Generalized Symmetric Definite Eigenvalue Problem. NASA CR-181914,
September 1989. (Also available as ICASE Report No. 89-69).
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3.4 Procedure L_STABIL 2

3.4.1 GENERAL DESCRIPTION

Procedure L_STABIL_2 performs linear stability analysis using an eigensolver selected by the
global macrosymbol eigensolver_name (e.g., EIG2, LAN, LANZ) and structural element
(ESi) processors based on the generic element processor template. The procedure assumes
that the finite element model, loads, and boundary conditions have already been generated,
and that the nodal displacements, reaction forces, element stresses, and buckling loads
and mode shapes need to be calculated. The applied loads may be due to a combination
of specified forces and displacements, and one constraint (i.e., boundary condition) set
is permitted per procedure call. A linear elastic stress analysis is performed first using
procedure L_STATIC (see Section 3.5) to calculate the prebuckling stress state (i.e., prestress
state). After the linear static solution, a linear stability analysis is performed.

3.4.2 THEORY

Linear elastic stability analyses may be formulated using the concept of adjacent equilib-
rium. Membrane forces in beams, plates, and shells result in an equilibrium configuration
in which the deformation pattern is tangent to the midsurface of the structure. However,
another equilibrium configuration involving out-of-plane deflections and rotations may be
adjacent to this membrane state. Buckling occurs when this membrane strain energy is
converted to bending strain energy. The linear elastic stability analysis is an eigenvalue
problem to calculate the critical load for the bifurcation in the solution (e.g., change from
a membrane state to a bending state). This eigenvalue problem can be written as

Ko, + MK (o)p; =0 i=1,2,... (3.4-1)
where
K = assembled linear elastic stiffness matrix
K (o) = assembled geometric stiffness matrix
¢; = i-th eigenvector or modeshape

i i-th eigenvalue or buckling load factor

The matrix denoted by K, has been called the initial stress stiffness matrix, the differential
stiffness matrix, the geometric stiffness matrix, and the stability coefficient matrix (e.g.,
see ref 3.4-1). It is independent of the elastic properties of the structure and dependent on
the geometry, displacement field, and state of stress. Herein the matrix K will be referred
to as the geometric stiffness matrix.

A general formulation for the geometric stiffness matrix is presented in reference 3.4-1.
Strains can be written as

€ = €L + €ENL (3.4-2)
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where €1, contains the linear strain-displacement terms and €) contains the higher-order
or nonlinear strain-displacement terms. For a given stress state o, elastic strain energy
is stored and can be expressed as

U=UL+UntL (3.4 -13)
where
U= l/ eTooydV (3.4 — 4a)
2Jv
1
Uy = —/ eloodV (3.4 — 4b)
2J)v
1 T
UnL =5 | enLOodV (3.4 — 4¢)
2Jv

The geometric stiffness matrix is derived from the strain energy produced by stresses acting
through displacements associated with the nonlinear strain-displacement relations. These
relations couple the membrane and bending effects. Typically the strain-displacements
relations are written using index notation as

[8."&1.,' + Ojui + B;uka,-u,,] (3.4 -5)

€ij =

N =

where u; = (u,v,w) for ¢ = 1,2,3, respectively, 9; denotes differentiation with respect to
ith coordinate direction and summation over repeated indices is implied. Let d denote the
nodal degrees of freedom, then

§ =Gd (3.4 -16)
where

6 = {0,u, Oyu, 8,u, 8.v, Oyv, 0,v, d,w, Oyw, 9, w}

The coefficients of G are obtained by differentiating the element shape functions. Finally
the matrix Q is defined as

[0,u O 0 v O 0 &w 0 0 ]
0 Ju 0 0 Jov 0 0 dw 0
0 0 9.u O 0 08,v 0 0 d.w
Q= (34-17)
Ou O,x 0 Ow v 0 OGw Gw O
0 v Ou 0 9,v v 0 OJ,w Jw
|0,y 0 0w Ov 0 O,v Ow 0 O,w]

With these definitions the nonlinear strains given by equation (3.4-2) can be written as

ENL = %QGd (3.4-18)
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The vector of initial stresses is
O = {020 Oy0 020 Tzyo Tyzo Tzzo} (3.4 - 9)

Substituting equations (3.4-6) through (3.4-9) into equation (3.4-4c) gives
1 .
Unt = §dT( / G'Q%0, av) (3.4 —10)
\4

However, the term QT oo can be written as

[

-3
QToy = |0 6 =S(00)6 (3.4 —11)
0

S n O
n OO

where

Oz0 Tzy0 Tzz0
§= | Tzyo Oyo Tyzo (3.4-12)

i Tz20 Tyzo 020

With these expressions, a general form of the geometric stiffness matrix can be written as
K,(o) = / GTS(00)GdV (3.4 -13)
| 4

which is symmetric and explicitly dependent on the stress state.

The stress state used to form the geometric stiffness matrix may be obtained in two ways.
The first way is first to perform a linear static stress analysis for the given load set and
constraint set. This way is used in procedure L_STABIL_2. The second way is to specify, in
advance, the values of the stress components given in equation (3.4-11) (i.e., specify the
prestress state). This way is used in procedure L_STABIL_1.

3.4.3 ALGORITHM

The algorithm used to solve equation (3.4-1) depends on the value of the global macrosym-
bol eigensolver_name. Processor EIG2 is used if eigensolver_name is defined to be EIG2.
This processor uses a nodal-block sparse matrix approach as described in reference 3.4-2.
Processor LAN is used if eigensolver_name is defined to be LAN. Processor LANZ is used
if eigensolver_name is defined to be LANZ. These processors are based on the Lanczos
algorithm as described in references 3.4-2 to 3.4-4.
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3.4.4 PROCEDURE USAGE

Procedure L_STABIL_2 may be invoked by the *call directive, and following it by a list of
arguments separated by semicolons(;) and enclosed in parentheses. Procedure arguments
are order-independent, and most have default values thus making them optional. The
formal syntax is as follows:

*call L_STABIL 2 ( argl = vall; arg2 = val2; ...)

where argi are argument names and vali ar